The third moment of the logarithm of the Riemann zeta function
Heilbronn Number Theory Seminar
23rd October 2024, 4:00 pm – 5:00 pm
Fry Building, 4th Floor Seminar Room
I will present joint work with Alessandro Fazzari in which we prove precise conditional estimates for the third (non-absolute) moment of the logarithm of the Riemann zeta function, beyond the Selberg central limit theorem, both for the real and imaginary part. These estimates match predictions made in work of Keating and Snaith. We require the Riemann Hypothesis, a conjecture for the triple correlation of Riemann zeros and another ``twisted'' pair correlation conjecture which captures the interaction of a prime power with Montgomery's pair correlation function. This conjecture can be proved on a certain subrange unconditionally, and on a larger range under the assumption of a variant of the Hardy-Littlewood conjecture with good uniformity.
Comments are closed.