Rachael Hughes

University of Bristol, Medical School


Selection bias when estimating average treatment effects using one-sample instrumental variable analysis


Statistics Seminar


15th February 2019, 2:00 pm – 2:45 pm
Main Maths Building, SM3


Participants in epidemiological and genetic studies are rarely true random samples of the populations they are intended to represent, and both known and unknown factors can influence participation in a study (known as selection into a study). The circumstances in which selection causes bias in an instrumental variable (IV) analysis are not widely understood by practitioners of IV analyses. We use directed acyclic graphs (DAGs) to depict assumptions about the selection mechanism (factors affecting selection) and show how DAGs can be used to determine when a two-stage least squares IV analysis is biased by different selection mechanisms. Via simulations, we show that selection can result in a biased IV estimate with substantial confi dence interval undercoverage, and the level of bias can differ between instrument strengths, a linear and nonlinear exposure-instrument association, and a causal and noncausal exposure effect. We present an application from the UK Biobank study, which is known to be a selected sample of the general population.





Organiser: Mathieu Gerber

Comments are closed.
css.php