Caroline Terry

University of Maryland

A stable arithmetic regularity lemma in finite abelian groups

Analysis and Geometry Seminar

29th May 2018, 3:00 pm – 4:00 pm
Howard House, 2nd Floor Seminar Room

The arithmetic regularity lemma for Fpn (first proved by Green in 2005) states that given A ⊆ Fpn, there exists H ≤ Fpn of bounded index such that A is Fourier-uniform with respect to almost all cosets of H. In general, the growth of the index of H is required to be of tower type depending on the degree of uniformity, and must also allow for a small number of non-uniform elements. Previously, in joint work with Wolf, we showed that under a natural stability theoretic assumption, the bad bounds and non-uniform elements are not necessary. In this talk, we present results extending these results to stable subsets of arbitrary finite abelian groups. This is joint work with Julia Wolf.

Comments are closed.