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The iterative conception of set
V0 = /0;
Vα+1 = P(Vα);
Vγ =

∪
α<γ Vα , where γ is a limit;

V =
∪

α<Ord Vα .

V
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First-order reflection

Reflection principles in set theory assert that V is so big that it is
indescribable.

Lévy-Montague Reflection
∀α∃β > α∀v ∈ Vβ (φ(v)↔ φVβ (v)).

Theorem (Lévy, Montague)
ZF ⊢ Lévy-Montague Reflection.
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Second-order reflection

Bernays’ Reflection
(RP2) ∀X[φ(X)→∃t(t is transitive∧φt(X∩ t))], where φ is any formula
in the language of class theory.

Theorem (Bernays)
RP2 implies that there are proper-class many weakly-compact cardinals.

Theorem (Reinhardt, Silver)
RP2 + KM is consistent relative to ZFC + an ω-Erdős cardinal.

An ω-Erdős cardinal is consistent with V=L, so RP2 is a weak large
cardinal axiom.
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Set Theory with Urelements
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Urelements

Urelements are members of sets that are not themselves sets (fundamental
particles, propositions, possible worlds, mereological fusions, etc.).

Zermelo (1930) considered set theory with a class of urelements.
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Iterative conception with urelements

Let A be a set of urelements.
V0(A) = A;
Vα+1(A) = P(Vα(A))∪Vα(A);
Vγ(A) =

∪
α<γ Vα(A), where γ is a limit;

V(A) =∪
α∈Ord Vα(A).

Let A be the class of urelements (not necessarily a set).
The whole universe U =

∪
A⊆A V(A).

U

V

A
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Question
How do reflection principles behave in urelement set theory?
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First-Order Reflection
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The L-M reflection is not the right formulation of reflection in urelement
set theory: every Vα(A) thinks that there is only a set of urelements.

Instead,
(RP) For every set x there is a transitive set t extending x such that
for every v1, ...,vn ∈ t, φ(v1, ...,vn)↔ φt(v1, ...,vn).

Partial reflection: any true statement is true in some transitive set
containing the parameters.

(RP−) If φ(x1, ...,xn), then there is a transitive set t containing
x1, ...xn such that φt(x1, ...,xn).

Theorem (Lévy)
Z + RP− ⊬ RP.

Are RP and RP− provable from “urelement set theory”? Are they
equivalent?
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ZFUR

Definition
The language of urelement set theory contains A as a unary predicate for
urelements. ZU is Zermelo set theory modified to allow a proper class of
urelements plus ∀x(A (x)→∀y(y /∈ x)).

Definition
ZFUR = ZU + Replacement.
ZFCUR = ZFUR + AC.
ZF = ZFUR + ∀x¬A (x).
ZFC = ZF + AC.

Note. The subscript R indicates that we are only working with
Replacement.
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Folklore
ZFCUR ⊬ RP−.

Proof.
Start with a model U |= ZFCUR + A ∼ ω. Let UFin =

∪
A⊆A V(A), where

A ⊆ A is finite.

UFin |= ZFCUR +A is a proper class.

In UFin no transitive set can reflect “A is a proper class ∧ Pairing ∧ Union
∧(∃x x = x)”, so RP− fails.

Remark. This also shows that ZFCUR cannot prove the Collection
Principle, i.e.,

∀x ∈ w∃yφ(x,y)→∃v∀x ∈ w∃y ∈ v φ(x,y).
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Question
When will first-order reflection hold?
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Plenitude and Tail

(Plenitude) For every κ, there are κ-many urelements.

Definition
For any sets of urelements A,B ⊆ A , B is a tail of A, if B is disjoint from
A and every C ⊆ A disjoint from A injects into B.

(Tail) Every set of urelements has a tail.
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A urelement-characterization of RP

Theorem
The following are equivalent over ZFCUR.

RP
RP−

Collection
Plenitude ∨ Tail

This provides a characterization of first-order reflection in terms of
urelements.
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Without AC?

The use of AC in the previous theorem is essential.

Theorem
ZFUR + Plenitude ⊬ RP (in fact, Collection);
ZFUR + RP ⊬ (Plenitude ∨ Tail).

Open Questions
ZFUR + Collection ⊢ RP−?
ZFUR + RP− ⊢ RP?
ZFUR + RP− ⊢ Collection?
...

17 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

Without AC?

The use of AC in the previous theorem is essential.

Theorem
ZFUR + Plenitude ⊬ RP (in fact, Collection);
ZFUR + RP ⊬ (Plenitude ∨ Tail).

Open Questions
ZFUR + Collection ⊢ RP−?
ZFUR + RP− ⊢ RP?
ZFUR + RP− ⊢ Collection?
...

17 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

Without AC?

The use of AC in the previous theorem is essential.

Theorem
ZFUR + Plenitude ⊬ RP (in fact, Collection);
ZFUR + RP ⊬ (Plenitude ∨ Tail).

Open Questions
ZFUR + Collection ⊢ RP−?
ZFUR + RP− ⊢ RP?
ZFUR + RP− ⊢ Collection?
...

17 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

Urelement class theory

The language of urelement class theory is two-sorted: the first-order
variables w,x,y,z, ... quantify over sets and urelements, and the
second-order variables X,Y,R,F, ... quantify over classes.

(Collection) ∀x ∈ w ∃yR(x,y)→∃v∀x ∈ w∃y ∈ v R(x,y).

(RP) For every X1, ..., Xn, there is a transitive set t such that for
every x1, ...,xm ∈ t,

φ(X1, ...,Xn,x1, ...,xm)↔ φt(X1 ∩ t, ...,Xn ∩ t,x1, ...,xm),

where φ contains only first-order quantifiers.
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Urelement class theories

Definition
GBUR = ZU + Class Extensionality + Replacement + First-Order
Comprehension.
KMUR = GBUR + Full Comprehension.

GBcUR = GBUR + AC.
KMcUR = KMUR + AC.
GBCU= GBUR + Global Well-Ordering (GWO)
KMCU = KMUR + GWO.
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Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.
(Global Choice) There is a class function F such that for every
non-empty set x, F(x) ∈ x.

Theorem (Felgner)
Over KMcUR,

Global Choice ↛ Global Well-Ordering;
Global Well-Ordering ↛ Limitation of Size.

20 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.
(Global Choice) There is a class function F such that for every
non-empty set x, F(x) ∈ x.

Theorem (Felgner)
Over KMcUR,

Global Choice ↛ Global Well-Ordering;
Global Well-Ordering ↛ Limitation of Size.

20 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.
(Global Choice) There is a class function F such that for every
non-empty set x, F(x) ∈ x.

Theorem (Felgner)
Over KMcUR,

Global Choice ↛ Global Well-Ordering;
Global Well-Ordering ↛ Limitation of Size.

20 / 30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection RP2 with Urelements

RP in class theory

Fact
GBCU ⊢ RP.

Theorem (Felgner)
KMcUR +Global Choice ⊬ RP (in fact, Collection).

Theorem
KMcUR +Collection+Plenitude ⊬ RP.

Open Question
KMcUR + Collection + Global Choice ⊢ RP?
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RP2 with Urelements
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Recall Bernays’ second-order reflection principle.
(RP2) ∀X[φ(X)→∃t(t is transitive∧φt(X∩ t))],

where φ can be any formula in the language of class theory.

In pure set theory, RP2 is a weak large cardinal axiom.

Question
Can urelements affect the strength of RP2?
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With few urelements

Let X ≤ Y stand for “there is an injection from X to Y”. X < Y is
X ≤ Y∧Y ≰ X.

Theorem
KMCU + RP2 + A ≤ V is equiconsistent with KM + RP2.

Thus, RP2 remains weak if there are few urelements.

Question
Is V < A consistent with RP2?
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The Uκ,A-hierarchy

Definition
Let κ be an infinite cardinal and A ⊆ A .

Uκ,A =
∪

B∈Pκ (A)

Vκ(B),

where Pκ(A) = {x ⊆ A : x < κ}.

Zermelo’s Quasi-Categoricity Theorem.
A full second-order model M satisfies ZFC2 iff M is isomorphic to some
Vκ , where κ is inaccessible.

Uκ,A is a natural generalization of Vκ in the context of urelement set
theory.
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Theorem
Let M be a transitive set. The following are equivalent.

⟨M,P(M)⟩ |= KMCU.
M = Uκ ,A for some inaccessible cardinal κ and A ⊆ A .

Moreover, Uκ,A |= V < A if κ < A.

κ

A

Uκ,A
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Theorem
Assume the consistency of a κ+-supercompact cardinal κ. There is a Uκ,A
model such that Uκ,A |= RP2 ∧ V < A .

A κ+-supercompact cardinal exceeds way beyond KM + RP2.

Question
What is the strength of RP2 + V < A ?
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Definition (Hamkins, Y.)
The Abundant Atom Axiom (AAA) =df

V < A ;
for every small class B (i.e, B < A ) there is a small D ⊆ I×B such
that every subclass of B is Di for some i ∈ I (“A strong limit”);
if I is small and D ⊆ I×B is such that Di is small for each i ∈ I , then
D itself is small (“A regular”).

Proposition (Hamkins, Y.)
If κ < κ ′ are both inaccessible and |A|= κ ′, then Uκ,A |= AAA;
if κ is < λ -supercompact for some inaccessible λ > κ, then there is a
model of Uκ,A |= RP2 + AAA.
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Theorem (Hamkins, Y.)
KMCU+ RP2 + AAA interprets KM + a supercompact cardinal.
Moreover, it implies the existence of a proper class of measurable
cardinals, and more.
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Thank You!
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