Bokai Yao

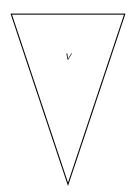
University of Notre Dame

Bristol Logic Meeting. July 1, 2023

Reflection in Set Theory

$$V_0 = \emptyset;$$
 $V_{\alpha+1} = P(V_{\alpha});$ $V_{\gamma} = \bigcup_{\alpha < \gamma} V_{\alpha},$ where γ is a limit; $V = \bigcup_{\alpha < Ord} V_{\alpha}.$

$$egin{aligned} V_0 &= \emptyset; \ V_{lpha+1} &= P(V_lpha); \ V_\gamma &= \bigcup_{lpha < \gamma} V_lpha, \ \text{where } \gamma \text{ is a limit;} \ V &= \bigcup_{lpha < Ord} V_lpha. \end{aligned}$$



First-order reflection

Reflection principles in set theory assert that V is so big that it is indescribable.

Reflection in Set Theory

Reflection principles in set theory assert that V is so big that it is indescribable.

Lévy-Montague Reflection

$$\forall \alpha \exists \beta > \alpha \forall v \in V_{\beta}(\varphi(v) \leftrightarrow \varphi^{V_{\beta}}(v)).$$

Reflection principles in set theory assert that V is so big that it is indescribable.

Lévy-Montague Reflection

$$\forall \alpha \exists \beta > \alpha \forall \nu \in V_{\beta}(\varphi(\nu) \leftrightarrow \varphi^{V_{\beta}}(\nu)).$$

Theorem (Lévy, Montague)

 $ZF \vdash L\acute{e}vy$ -Montague Reflection.

Second-order reflection

Bernays' Reflection

 $(\mathsf{RP}_2) \ \forall X[\varphi(X) \to \exists t(t \text{ is transitive} \land \varphi^t(X \cap t))], \text{ where } \varphi \text{ is any formula}$ in the language of class theory.

Bernays' Reflection

 $(\mathsf{RP}_2)\ \forall X[\varphi(X) \to \exists t(t \text{ is transitive} \land \varphi^t(X \cap t))]$, where φ is any formula in the language of class theory.

Theorem (Bernays)

RP₂ implies that there are proper-class many weakly-compact cardinals.

Bernays' Reflection

Reflection in Set Theory

 $(\mathsf{RP}_2) \ \forall X[\varphi(X) \to \exists t(t \text{ is transitive} \land \varphi^t(X \cap t))], \text{ where } \varphi \text{ is any formula}$ in the language of class theory.

Theorem (Bernays)

RP₂ implies that there are proper-class many weakly-compact cardinals.

Theorem (Reinhardt, Silver)

 $RP_2 + KM$ is consistent relative to $ZFC + an \omega$ -Erdős cardinal.

Bernays' Reflection

 $(\mathsf{RP}_2)\ \forall X[\varphi(X) \to \exists t(t \text{ is transitive} \land \varphi^t(X \cap t))]$, where φ is any formula in the language of class theory.

Theorem (Bernays)

 RP_2 implies that there are proper-class many weakly-compact cardinals.

Theorem (Reinhardt, Silver)

 $RP_2 + KM$ is consistent relative to $ZFC + an \omega$ -Erdős cardinal.

An ω -Erdős cardinal is consistent with V=L, so RP₂ is a weak large cardinal axiom.

Set Theory with Urelements

Urelements

Urelements are members of sets that are not themselves sets (fundamental particles, propositions, possible worlds, mereological fusions, etc.).

Urelements

Urelements are members of sets that are not themselves sets (fundamental particles, propositions, possible worlds, mereological fusions, etc.).

Zermelo (1930) considered set theory with a class of urelements.

Let A be a set of urelements.

$$V_0(A) = A;$$

 $V_{\alpha+1}(A) = P(V_{\alpha}(A)) \cup V_{\alpha}(A);$
 $V_{\gamma}(A) = \bigcup_{\alpha < \gamma} V_{\alpha}(A), \text{ where } \gamma \text{ is a limit;}$
 $V(A) = \bigcup_{\alpha \in Ord} V_{\alpha}(A).$

Let A be a set of urelements.

$$V_0(A) = A;$$

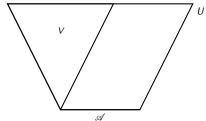
 $V_{\alpha+1}(A) = P(V_{\alpha}(A)) \cup V_{\alpha}(A);$
 $V_{\gamma}(A) = \bigcup_{\alpha < \gamma} V_{\alpha}(A), \text{ where } \gamma \text{ is a limit;}$
 $V(A) = \bigcup_{\alpha \in Ord} V_{\alpha}(A).$

Let \mathscr{A} be the class of urelements (not necessarily a set). The whole universe $U = \bigcup_{A \subset \mathscr{A}} V(A)$.

Let A be a set of urelements.

$$\begin{array}{l} V_0(A) = A; \\ V_{\alpha+1}(A) = P(V_\alpha(A)) \cup V_\alpha(A); \\ V_\gamma(A) = \bigcup_{\alpha < \gamma} V_\alpha(A), \text{ where } \gamma \text{ is a limit;} \\ V(A) = \bigcup_{\alpha \in \mathit{Ord}} V_\alpha(A). \end{array}$$

Let \mathscr{A} be the class of urelements (not necessarily a set). The whole universe $U = \bigcup_{A \subset \mathcal{A}} V(A)$.



How do reflection principles behave in urelement set theory?

First-Order Reflection

First-Order Reflection

Instead,

(RP) For every set x there is a transitive set t extending x such that for every $v_1,...,v_n \in t$, $\varphi(v_1,...,v_n) \leftrightarrow \varphi^t(v_1,...,v_n)$.

Instead,

(RP) For every set x there is a transitive set t extending x such that for every $v_1,...,v_n \in t$, $\varphi(v_1,...,v_n) \leftrightarrow \varphi^t(v_1,...,v_n)$.

Partial reflection: any true statement is true in some transitive set containing the parameters.

(RP⁻) If $\varphi(x_1,...,x_n)$, then there is a transitive set t containing $x_1,...x_n$ such that $\varphi^t(x_1,...,x_n)$.

Instead,

(RP) For every set x there is a transitive set t extending x such that for every $v_1,...,v_n \in t$, $\varphi(v_1,...,v_n) \leftrightarrow \varphi^t(v_1,...,v_n)$.

Partial reflection: any true statement is true in some transitive set containing the parameters.

(RP⁻) If $\varphi(x_1,...,x_n)$, then there is a transitive set t containing $x_1,...x_n$ such that $\varphi^t(x_1,...,x_n)$.

Theorem (Lévy)

$$Z + RP^{-} \nvdash RP$$
.

Instead,

(RP) For every set x there is a transitive set t extending x such that for every $v_1,...,v_n \in t$, $\varphi(v_1,...,v_n) \leftrightarrow \varphi^t(v_1,...,v_n)$.

Partial reflection: any true statement is true in some transitive set containing the parameters.

(RP⁻) If $\varphi(x_1,...,x_n)$, then there is a transitive set t containing $x_1,...x_n$ such that $\varphi^t(x_1,...,x_n)$.

Theorem (Lévy)

 $Z + RP^- \nvdash RP$.

Are RP and RP⁻ provable from "urelement set theory"? Are they equivalent?

Definition

The language of urelement set theory contains $\mathscr A$ as a unary predicate for urelements. ZU is Zermelo set theory modified to allow a proper class of urelements plus $\forall x (\mathscr{A}(x) \to \forall y (y \notin x))$.

First-Order Reflection 00000000000

Definition

The language of urelement set theory contains $\mathscr A$ as a unary predicate for urelements. ZU is Zermelo set theory modified to allow a proper class of urelements plus $\forall x (\mathscr{A}(x) \to \forall y (y \notin x))$.

First-Order Reflection 00000000000

Definition

 $ZFU_R = ZU + Replacement.$

 $ZFCU_R = ZFU_R + AC$.

 $ZF = ZFU_R + \forall x \neg \mathscr{A}(x).$

ZFC = ZF + AC.

Definition

The language of urelement set theory contains $\mathscr A$ as a unary predicate for urelements. ZU is Zermelo set theory modified to allow a proper class of urelements plus $\forall x (\mathscr{A}(x) \to \forall y (y \notin x))$.

First-Order Reflection

Definition

 $ZFU_R = ZU + Replacement.$

 $ZFCU_R = ZFU_R + AC$.

 $ZF = ZFU_R + \forall x \neg \mathscr{A}(x).$

ZFC = ZF + AC.

Note. The subscript R indicates that we are only working with Replacement.

 $\mathsf{ZFCU}_\mathsf{R} \nvdash \mathsf{RP}^-$.

 $ZFCU_R \nvdash RP^-$.

Proof.

Start with a model $U \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A} \sim \omega$. Let $U^{\mathsf{Fin}} = \bigcup_{A \subseteq \mathscr{A}} V(A)$, where $A \subseteq \mathscr{A}$ is finite.

 $ZFCU_R \nvdash RP^-$.

Proof.

Start with a model $U \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A} \sim \omega$. Let $U^{\mathsf{Fin}} = \bigcup_{A \subseteq \mathscr{A}} V(A)$, where $A \subseteq \mathscr{A}$ is finite.

 $U^{Fin} \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A}$ is a proper class.

 $ZFCU_R \nvdash RP^-$.

Proof.

Start with a model $U \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A} \sim \omega$. Let $U^{\mathsf{Fin}} = \bigcup_{A \subseteq \mathscr{A}} V(A)$, where $A \subseteq \mathscr{A}$ is finite.

 $U^{Fin} \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A}$ is a proper class.

In U^{Fin} no transitive set can reflect " $\mathscr A$ is a proper class \wedge Pairing \wedge Union $\wedge (\exists x \ x = x)$ ", so RP⁻ fails.

 $ZFCU_R \nvdash RP^-$.

Proof.

Start with a model $U \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A} \sim \omega$. Let $U^{\mathsf{Fin}} = \bigcup_{A \subseteq \mathscr{A}} V(A)$, where $A \subseteq \mathscr{A}$ is finite.

 $U^{Fin} \models \mathsf{ZFCU}_\mathsf{R} + \mathscr{A}$ is a proper class.

In U^{Fin} no transitive set can reflect " $\mathscr A$ is a proper class \wedge Pairing \wedge Union $\wedge (\exists x \ x = x)$ ", so RP $^-$ fails.

Remark. This also shows that ZFCU_R cannot prove the Collection Principle, i.e.,

$$\forall x \in w \exists y \varphi(x, y) \to \exists v \forall x \in w \exists y \in v \ \varphi(x, y).$$

First-Order Reflection 000000000000

Question

When will first-order reflection hold?

First-Order Reflection

(Plenitude) For every κ , there are κ -many urelements.

Plenitude and Tail

(Plenitude) For every κ , there are κ -many urelements.

Definition

For any sets of urelements $A, B \subseteq \mathcal{A}$, B is a **tail** of A, if B is disjoint from A and every $C \subseteq \mathscr{A}$ disjoint from A injects into B.

First-Order Reflection

Plenitude and Tail

(Plenitude) For every κ , there are κ -many urelements.

Definition

For any sets of urelements $A, B \subseteq \mathcal{A}$, B is a **tail** of A, if B is disjoint from A and every $C \subseteq \mathscr{A}$ disjoint from A injects into B.

(Tail) Every set of urelements has a tail.

A urelement-characterization of RP

Theorem

The following are equivalent over $ZFCU_R$.

- RP
- RP⁻
- Collection
- Plenitude ∨ Tail

A urelement-characterization of RP

Theorem

The following are equivalent over ZFCU_R.

- RP
- RP⁻
- Collection
- Plenitude ∨ Tail

This provides a characterization of first-order reflection in terms of urelements.

The use of AC in the previous theorem is essential.

Without AC?

The use of AC in the previous theorem is essential.

Theorem

- ZFU_R + Plenitude ⊬ RP (in fact, Collection);
- $ZFU_R + RP \not\vdash (Plenitude \lor Tail)$.

Without AC?

The use of AC in the previous theorem is essential.

Theorem

- ZFU_R + Plenitude ⊬ RP (in fact, Collection);
- $ZFU_R + RP \not\vdash (Plenitude \lor Tail)$.

Open Questions

- $ZFU_R + Collection \vdash RP^-$?
- $ZFU_R + RP^- \vdash RP$?
- $ZFU_R + RP^- \vdash Collection$?

The language of *urelement class theory* is two-sorted: the first-order

variables w, x, y, z, ... quantify over sets and urelements, and the second-order variables X, Y, R, F, ... quantify over classes.

Urelement class theory

The language of *urelement class theory* is two-sorted: the first-order variables w, x, y, z, ... quantify over sets and urelements, and the second-order variables X, Y, R, F, ... quantify over classes.

(Collection)
$$\forall x \in w \ \exists y R(x,y) \rightarrow \exists v \forall x \in w \exists y \in v \ R(x,y).$$

Urelement class theory

The language of *urelement class theory* is two-sorted: the first-order variables w, x, y, z, ... quantify over sets and urelements, and the second-order variables X, Y, R, F, ... quantify over classes.

(Collection)
$$\forall x \in w \ \exists y R(x,y) \rightarrow \exists v \forall x \in w \exists y \in v \ R(x,y).$$

(RP) For every X_1 , ..., X_n , there is a transitive set t such that for every $x_1,...,x_m \in t$,

$$\varphi(X_1,...,X_n,x_1,...,x_m) \leftrightarrow \varphi^t(X_1 \cap t,...,X_n \cap t,x_1,...,x_m),$$

where ϕ contains only first-order quantifiers.

Urelement class theories

Definition

 $\mathsf{GBU}_\mathsf{R} = \mathsf{ZU} + \mathsf{Class}\ \mathsf{Extensionality} + \mathsf{Replacement} + \mathsf{First-Order}$ Comprehension.

 $\mathsf{KMU}_\mathsf{R} = \mathsf{GBU}_\mathsf{R} \, + \, \mathsf{Full} \, \, \mathsf{Comprehension}.$

Urelement class theories

Definition

 $\mathsf{GBU}_\mathsf{R} = \mathsf{ZU} + \mathsf{Class}\ \mathsf{Extensionality} + \mathsf{Replacement} + \mathsf{First-Order}$ Comprehension.

 $KMU_R = GBU_R + Full Comprehension.$

 $GBcU_R = GBU_R + AC$.

 $KMcU_R = KMU_R + AC$.

Urelement class theories

Definition

 $GBU_R = ZU + Class Extensionality + Replacement + First-Order Comprehension.$

 $KMU_R = GBU_R + Full Comprehension.$

 $GBcU_R = GBU_R + AC$.

 $KMcU_R = KMU_R + AC$.

 $GBCU = GBU_R + Global Well-Ordering (GWO)$

 $KMCU = KMU_R + GWO.$

Second-order AC

With proper class many urelements, different second-order versions of AC come apart.

First-Order Reflection

Second-order AC

With proper class many urelements, different second-order versions of AC come apart.

(Limitation of Size) All proper classes are equinumerous.

(Global Well-Ordering) There is a well-ordering of the universe U.

(Global Choice) There is a class function F such that for every non-empty set x, $F(x) \in x$.

Second-order AC

With proper class many urelements, different second-order versions of AC come apart.

(Limitation of Size) All proper classes are equinumerous.

(Global Well-Ordering) There is a well-ordering of the universe U.

(Global Choice) There is a class function F such that for every non-empty set x, $F(x) \in x$.

Theorem (Felgner)

Over $KMcU_R$,

- Global Choice → Global Well-Ordering;
- Global Well-Ordering → Limitation of Size.

RP in class theory

RP in class theory

Fact

 $GBCU \vdash RP$.

RP in class theory

Fact

 $GBCU \vdash RP$.

Theorem (Felgner)

 $KMcU_R + Global \ Choice \not\vdash RP \ (in fact, \ Collection).$

RP in class theory

Fact

 $GBCU \vdash RP$.

Theorem (Felgner)

 $KMcU_R + Global\ Choice \not\vdash RP\ (in\ fact,\ Collection).$

Theorem

 $KMcU_R + Collection + Plenitude \not\vdash RP$.

RP in class theory

Fact

 $GBCU \vdash RP$.

Theorem (Felgner)

 $KMcU_R + Global \ Choice \not\vdash RP \ (in fact, \ Collection).$

Theorem

 $KMcU_R + Collection + Plenitude \not\vdash RP$.

Open Question

 $KMcU_R + Collection + Global Choice \vdash RP?$

RP₂ with Urelements

Recall Bernays' second-order reflection principle.

$$(\mathsf{RP}_2) \ orall X [arphi(X)
ightarrow \exists t (t \ \mathsf{is \ transitive} \wedge arphi^t(X \cap t))],$$

where φ can be any formula in the language of class theory.

Recall Bernays' second-order reflection principle.

$$(\mathsf{RP}_2) \ \forall X [\varphi(X) o \exists t (t \ \mathsf{is \ transitive} \land \varphi^t(X \cap t))],$$

where φ can be any formula in the language of class theory.

In pure set theory, RP₂ is a weak large cardinal axiom.

$$(\mathsf{RP}_2) \ \forall X[\varphi(X) \to \exists t(t \ \mathsf{is \ transitive} \land \varphi^t(X \cap t))],$$

where ϕ can be any formula in the language of class theory.

In pure set theory, RP_2 is a weak large cardinal axiom.

Question

Can urelements affect the strength of RP_2 ?

Let $X \le Y$ stand for "there is an injection from X to Y". X < Y is $X \leq Y \land Y \nleq X$.

Let $X \le Y$ stand for "there is an injection from X to Y". X < Y is $X \leq Y \land Y \nleq X$.

Theorem

 $KMCU + RP_2 + \mathscr{A} \leq V$ is equiconsistent with $KM + RP_2$.

Let $X \le Y$ stand for "there is an injection from X to Y". X < Y is $X \leq Y \land Y \nleq X$.

Theorem

 $KMCU + RP_2 + \mathcal{A} < V$ is equiconsistent with $KM + RP_2$.

Thus, RP₂ remains weak if there are few urelements.

With few urelements

Let X < Y stand for "there is an injection from X to Y". X < Y is $X \leq Y \land Y \nleq X$.

Theorem

 $KMCU + RP_2 + \mathcal{A} \leq V$ is equiconsistent with $KM + RP_2$.

Thus, RP₂ remains weak if there are few urelements.

Question

Is $V < \mathcal{A}$ consistent with RP₂?

The $U_{\kappa,A}$ -hierarchy

Definition

Let κ be an infinite cardinal and $A \subseteq \mathcal{A}$.

$$U_{\kappa,A} = \bigcup_{B \in P_{\kappa}(A)} V_{\kappa}(B),$$

where
$$P_{\kappa}(A) = \{x \subseteq A : x < \kappa\}.$$

The $U_{\kappa,A}$ -hierarchy

Definition

Let κ be an infinite cardinal and $A \subseteq \mathcal{A}$.

$$U_{\kappa,A} = \bigcup_{B \in P_{\kappa}(A)} V_{\kappa}(B),$$

where $P_{\kappa}(A) = \{x \subseteq A : x < \kappa\}.$

Zermelo's Quasi-Categoricity Theorem.

A full second-order model \mathcal{M} satisfies ZFC₂ iff \mathcal{M} is isomorphic to some V_{κ} , where κ is inaccessible.

The $U_{\kappa,A}$ -hierarchy

Definition

Let κ be an infinite cardinal and $A \subseteq \mathcal{A}$.

$$U_{\kappa,A} = \bigcup_{B \in P_{\kappa}(A)} V_{\kappa}(B),$$

where $P_{\kappa}(A) = \{x \subseteq A : x < \kappa\}.$

Zermelo's Quasi-Categoricity Theorem.

A full second-order model \mathcal{M} satisfies ZFC₂ iff \mathcal{M} is isomorphic to some V_{κ} , where κ is inaccessible.

 $U_{\kappa,A}$ is a natural generalization of V_{κ} in the context of urelement set theory.

Let M be a transitive set. The following are equivalent.

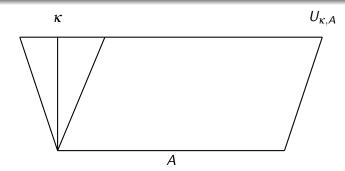
- \bullet $\langle M, P(M) \rangle \models KMCU.$
- $M = U_{\kappa,A}$ for some inaccessible cardinal κ and $A \subseteq \mathscr{A}$.

Moreover, $U_{\kappa,A} \models V < \mathscr{A}$ if $\kappa < A$.

Let M be a transitive set. The following are equivalent.

- $\langle M, P(M) \rangle \models KMCU$.
- $M = U_{\kappa,A}$ for some inaccessible cardinal κ and $A \subseteq \mathscr{A}$.

Moreover, $U_{\kappa,A} \models V < \mathscr{A}$ if $\kappa < A$.



Theorem

Assume the consistency of a κ^+ -supercompact cardinal κ . There is a $U_{\kappa,A}$ model such that $U_{\kappa,A} \models RP_2 \land V < \mathscr{A}$.

Assume the consistency of a κ^+ -supercompact cardinal κ . There is a $U_{\kappa,A}$ model such that $U_{\kappa,A} \models RP_2 \land V < \mathscr{A}$.

A κ^+ -supercompact cardinal exceeds way beyond KM + RP₂.

Assume the consistency of a κ^+ -supercompact cardinal κ . There is a $U_{\kappa,A}$ model such that $U_{\kappa,A} \models RP_2 \land V < \mathscr{A}$.

A κ^+ -supercompact cardinal exceeds way beyond KM + RP₂.

Question

What is the strength of $RP_2 + V < \mathscr{A}$?

Definition (Hamkins, Y.)

The Abundant Atom Axiom (AAA) $=_{df}$

- V < ∅;
- for every small class B (i.e, $B < \mathscr{A}$) there is a small $D \subseteq I \times B$ such that every subclass of B is D_i for some $i \in I$ (" \mathscr{A} strong limit");
- if I is small and $D \subseteq I \times B$ is such that D_i is small for each $i \in \mathscr{I}$, then D itself is small (" \mathscr{A} regular").

Definition (Hamkins, Y.)

The Abundant Atom Axiom (AAA) $=_{df}$

- V < ∅;
- for every small class B (i.e, $B < \mathscr{A}$) there is a small $D \subseteq I \times B$ such that every subclass of B is D_i for some $i \in I$ (" \mathscr{A} strong limit");
- if I is small and $D \subseteq I \times B$ is such that D_i is small for each $i \in \mathscr{I}$, then D itself is small (" \mathscr{A} regular").

Proposition (Hamkins, Y.)

• If $\kappa < \kappa'$ are both inaccessible and $|A| = \kappa'$, then $U_{\kappa,A} \models AAA$;

Definition (Hamkins, Y.)

The Abundant Atom Axiom $(AAA) =_{df}$

- V < ∅;
- for every small class B (i.e, $B < \mathscr{A}$) there is a small $D \subseteq I \times B$ such that every subclass of B is D_i for some $i \in I$ (" \mathscr{A} strong limit");
- if I is small and $D \subseteq I \times B$ is such that D_i is small for each $i \in \mathscr{I}$, then D itself is small (" \mathscr{A} regular").

Proposition (Hamkins, Y.)

- If $\kappa < \kappa'$ are both inaccessible and $|A| = \kappa'$, then $U_{\kappa,A} \models AAA$;
- if κ is $<\lambda$ -supercompact for some inaccessible $\lambda > \kappa$, then there is a model of $U_{\kappa,A} \models \mathsf{RP}_2 + \mathsf{AAA}$.

 $KMCU+RP_2+AAA$ interprets KM+a supercompact cardinal. Moreover, it implies the existence of a proper class of measurable cardinals, and more. Thank You!