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First-order reflection

Reflection principles in set theory assert that V'is so big that it is
indescribable.
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First-order reflection

Reflection principles in set theory assert that V'is so big that it is
indescribable.

Lévy-Montague Reflection
Vaap > avve Vg(p(v) < ¢V (v)).

Theorem (Lévy, Montague)
ZF = Lévy-Montague Reflection.
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Bernays' Reflection

(RP2) VX[@(X) — 3t(t is transitive A @' (XN t))], where ¢ is any formula
in the language of class theory.
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Second-order reflection

Bernays' Reflection

(RP2) VX[@(X) — 3t(t is transitive A @' (XN t))], where ¢ is any formula
in the language of class theory.

Theorem (Bernays)

RP, implies that there are proper-class many weakly-compact cardinals.

v

Theorem (Reinhardt, Silver)
RP> + KM is consistent relative to ZFC + an w-Erd&s cardinal.

An w-Erdé6s cardinal is consistent with V=L, so RP; is a weak large
cardinal axiom.
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Urelements

Urelements are members of sets that are not themselves sets (fundamental
particles, propositions, possible worlds, mereological fusions, etc.).

Zermelo (1930) considered set theory with a class of urelements.
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Va+1(A) = P(Va(A)) U Vo (A);
Vy(A) = Ug<y Va(A), where yis a limit;
V(A) = Uqeord Va(A).
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Question J

How do reflection principles behave in urelement set theory?
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The L-M reflection is not the right formulation of reflection in urelement
set theory: every Vi (A) thinks that there is only a set of urelements.
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The L-M reflection is not the right formulation of reflection in urelement
set theory: every Vi (A) thinks that there is only a set of urelements.

Instead,
(RP) For every set x there is a transitive set t extending x such that
for every vi,...,vp € t, @(vi,...,Vn) <> @Y (v, ..., Vp).
Partial reflection: any true statement is true in some transitive set
containing the parameters.

(RP™) If @(x1,...,xn), then there is a transitive set t containing
X1,..-Xp such that @*(xq,...,x,).
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The L-M reflection is not the right formulation of reflection in urelement
set theory: every Vi (A) thinks that there is only a set of urelements.

Instead,

(RP) For every set x there is a transitive set t extending x such that
for every vi,...,vp € t, @(vi,...,Vn) <> @Y (v, ..., Vp).

Partial reflection: any true statement is true in some transitive set
containing the parameters.

(RP™) If @(x1,...,xn), then there is a transitive set t containing
X1,..-Xp such that @*(xq,...,x,).

Theorem (Lévy)
Z + RP~ ¥ RP J

Are RP and RP~ provable from “urelement set theory"? Are they

equivalent?
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ZFUR

Definition

The language of urelement set theory contains .7 as a unary predicate for
urelements. ZU is Zermelo set theory modified to allow a proper class of
urelements plus Vx(.o7 (x) — Vy(y & x)).
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Definition

The language of urelement set theory contains .7 as a unary predicate for
urelements. ZU is Zermelo set theory modified to allow a proper class of
urelements plus Vx(.o7 (x) — Vy(y & x)).

Definition

ZFUr = ZU + Replacement.
ZFCUg = ZFUgr + AC.

ZF = ZFUg + Vx4 (x).
ZFC = ZF + AC.
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ZFUR

Definition
The language of urelement set theory contains .7 as a unary predicate for

urelements. ZU is Zermelo set theory modified to allow a proper class of
urelements plus Vx(.<7 (x) — Vy(y ¢ x)).

Definition

ZFUr = ZU + Replacement.
ZFCUg = ZFUgr + AC.

ZF = ZFUg + Vx4 (x).
ZFC = ZF + AC.

Note. The subscript R indicates that we are only working with
Replacement.
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Start with a model U= ZFCUg + & ~ @. Let U™ =J,, V(A), where
A C of is finite.
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UFin |= ZFCUR + 7 is a proper class.
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A C of is finite.

UFin |= ZFCUR + 7 is a proper class.

In UF" no transitive set can reflect “.7 is a proper class A Pairing A Union
A(Fx x=x)", so RP~ fails. O
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Folklore
ZFCUR ¥ RP~.

Proof.

Start with a model U= ZFCUg + & ~ @. Let U™ =J,, V(A), where
A C of is finite.

UFin |= ZFCUR + 7 is a proper class.

In UF" no transitive set can reflect “.7 is a proper class A Pairing A Union
A(Fx x=x)", so RP~ fails. O

v

Remark. This also shows that ZFCUg cannot prove the Collection
Principle, i.e.,

Vx € wyp(x,y) — IWx e wly € v ¢(x,y).
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When will first-order reflection hold?

Question J
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Definition

For any sets of urelements A, BC 7, B is a tail of A, if B is disjoint from
A and every CC &7 disjoint from A injects into B.
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0O0000e000000

Plenitude and Tail

(Plenitude) For every k, there are k-many urelements.

Definition
For any sets of urelements A, BC 7, B is a tail of A, if B is disjoint from
A and every CC &7 disjoint from A injects into B.

(Tail) Every set of urelements has a tail.
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Reflection in Set Theory

A urelement-characterization of RP

Theorem
The following are equivalent over ZFCURg.
o RP
o RP~
o Collection
o Plenitude v Tail

16/30



flection in Set Theory S eory with Urelements First-Order Reflection

000000800000

A urelement-characterization of RP

Theorem

The following are equivalent over ZFCURg.
o RP
o RP~

o Collection

o Plenitude v Tail )

This provides a characterization of first-order reflection in terms of
urelements.
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The use of AC in the previous theorem is essential.
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Without AC?

The use of AC in the previous theorem is essential.

Theorem
e ZFUg + Plenitude ¥ RP (in fact, Collection);
e ZFUgr + RP ¥ (Plenitude v Tail).
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Without AC?

The use of AC in the previous theorem is essential.

Theorem
e ZFUg + Plenitude ¥ RP (in fact, Collection);
e ZFUgr + RP ¥ (Plenitude v Tail).

Open Questions
e ZFUgr + Collection = RP~?
o ZFUg + RP~ + RP?
e ZFUgr + RP~ F Collection?
° ...
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Urelement class theory

The language of urelement class theory is two-sorted: the first-order
variables w, x,y, z, ... quantify over sets and urelements, and the
second-order variables X, Y, R, F,... quantify over classes.
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Urelement class theory

The language of urelement class theory is two-sorted: the first-order
variables w, x,y, z, ... quantify over sets and urelements, and the
second-order variables X, Y, R, F,... quantify over classes.

(Collection) Vx € w yR(x,y) — IWx € wdy € v R(x, ).

(RP) For every Xi, ..., Xp, there is a transitive set t such that for
every Xi,...,Xm € t,

(p(Xl,...,Xn,Xl,...,Xm) > (pt(Xl Nt,....,XpN t,Xl,...,Xm),

where @ contains only first-order quantifiers.
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Urelement class theories

Definition

GBUR = ZU + Class Extensionality + Replacement + First-Order

Comprehension.
KMURg = GBUgR + Full Comprehension.
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Urelement class theories

Definition

GBUR = ZU + Class Extensionality + Replacement + First-Order
Comprehension.

KMURg = GBUgR + Full Comprehension.

GBcUr = GBURr + AC.

KMcUgr = KMUg + AC.
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Urelement class theories

Definition

GBUR = ZU + Class Extensionality + Replacement + First-Order
Comprehension.

KMURg = GBUgR + Full Comprehension.

GBcUr = GBURr + AC.

KMcUgr = KMUg + AC.

GBCU= GBUR + Global Well-Ordering (GWO)

KMCU = KMUgr + GWO.
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With proper class many urelements, different second-order versions of AC
come apart.

20/30



heory with Urelements First-Order Reflection

000000000080

Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.

(Global Choice) There is a class function F such that for every
non-empty set x, F(x) € x.
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Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.
(Global Choice) There is a class function F such that for every
non-empty set x, F(x) € x.

Theorem (Felgner)

Over KMcUg,

@ Global Choice - Global Well-Ordering;
o Global Well-Ordering + Limitation of Size.
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Theorem (Felgner)

KMcUg + Global Choice# RP (in fact, Collection).

Theorem

KMcUg + Collection+ Plenitude ¥ RP. )

21/30



Reflection in Set Theory Set Theory with Urelements First-Order Reflection

00000000000 e

RP in class theory

Fact

GBCU F RP. )
Theorem (Felgner)

KMcUg + Global Choice# RP (in fact, Collection).

Theorem

KMcUg + Collection+ Plenitude ¥ RP. )
Open Question

KMcUR + Collection + Global Choice - RP? |
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Recall Bernays' second-order reflection principle.
(RP2) VX[@(X) — 3t(t is transitive A @' (XN t))],

where ¢ can be any formula in the language of class theory.
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Recall Bernays' second-order reflection principle.
(RP2) VX[@(X) — 3t(t is transitive A @' (XN t))],
where ¢ can be any formula in the language of class theory.

In pure set theory, RP; is a weak large cardinal axiom.

Question J

Can urelements affect the strength of RP,?

23/30



flection in Set Theor Set Theory with Urelements ) flection RP, with Urelements

00®000000

With few urelements

Let X < Y stand for “there is an injection from Xto Y. X< Yis
X< YA Yjﬁ X.
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With few urelements

Let X < Y stand for “there is an injection from Xto Y. X< Yis
X<YANYLX

Theorem
KMCU + RP, + «of < V is equiconsistent with KM + RP5. J

Thus, RP> remains weak if there are few urelements.

Question J

Is V< o consistent with RP>?
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The Uy a-hierarchy

Definition
Let k¥ be an infinite cardinal and AC &

Uea= |J W(B),
BeP(A)

where P(A)={xC A: x< k}.
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The Uy a-hierarchy

Definition
Let k¥ be an infinite cardinal and AC &

Uea= |J W(B),
BePy(A)

where P(A)={xC A: x< k}.

Zermelo's Quasi-Categoricity Theorem.

A full second-order model .# satisfies ZFC, iff .# is isomorphic to some
V., where K is inaccessible.
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The Uy a-hierarchy

Definition
Let k¥ be an infinite cardinal and AC &

Uea= |J W(B),
BePy(A)

where P(A)={xC A: x< k}.

Zermelo's Quasi-Categoricity Theorem.

A full second-order model .# satisfies ZFC, iff .# is isomorphic to some
V., where K is inaccessible.

Uk, a is a natural generalization of Vi in the context of urelement set
theory.
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Theorem
Let M be a transitive set. The following are equivalent.

e (M,P(M)) = KMCU.

@ M= Ui a for some inaccessible cardinal x and A C /.
Moreover, Ug a = V< o if kK < A.
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Theorem
Let M be a transitive set. The following are equivalent.

e (M,P(M)) = KMCU.

@ M= Ui a for some inaccessible cardinal x and A C /.
Moreover, Ug a = V< o if kK < A.

K UKA

)
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Theorem

Assume the consistency of a k" -supercompact cardinal k. There is a Uy a
model such that U a = RP> AN V< /.
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Theorem

Assume the consistency of a k" -supercompact cardinal k. There is a Uy a
model such that U a = RP> AN V< /.

A xt-supercompact cardinal exceeds way beyond KM + RP».

Question
What is the strength of RP, + V< &7 J
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Definition (Hamkins, Y.)
The Abundant Atom Axiom (AAA) =g4¢
o V<

o for every small class B (i.e, B < .&7) there is a small D C [ x B such
that every subclass of B is D; for some i€ | (“.<7 strong limit");

e if /is small and D C I x B is such that D; is small for each i € .#, then
D itself is small (< regular").
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Definition (Hamkins, Y.)
The Abundant Atom Axiom (AAA) =g4¢
o V<

o for every small class B (i.e, B < .&7) there is a small D C [ x B such
that every subclass of B is D; for some i€ | (“.<7 strong limit");

e if /is small and D C I x B is such that D; is small for each i € .#, then
D itself is small (< regular").

Proposition (Hamkins, Y.)
o If k¥ <k’ are both inaccessible and |A| = «/, then Uy 4 = AAA;

e if K is < A-supercompact for some inaccessible A > k, then there is a
model of U a = RP2 + AAA.
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Theorem (Hamkins, Y.)

KMCU+ RP, + AAA interprets KM + a supercompact cardinal.

Moreover, it implies the existence of a proper class of measurable
cardinals, and more.
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Thank Youl
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