Full and Mixed (Boolean-Valued) Models

Xinhe Wu
University of Bristol
June 302023

Introduction

- A classical model of a first order language \mathscr{L} has as its value range the complete Boolean algebra $2=\{0,1\}$.

Introduction

- A classical model of a first order language \mathscr{L} has as its value range the complete Boolean algebra $2=\{0,1\}$.
- Logical connectives and quantifiers are interpreted as algebratic operations on 2: conjunction as Boolean meet, negation as Boolean complementation, etc.

Introduction

- A classical model of a first order language \mathscr{L} has as its value range the complete Boolean algebra $2=\{0,1\}$.
- Logical connectives and quantifiers are interpreted as algebratic operations on 2: conjunction as Boolean meet, negation as Boolean complementation, etc.
- A natural way to generalize the classical models: use an arbitrary complete Boolean algebra as the range of truth values.

Boolean-Valued Models

Boolean Algebra

A Boolean algebra is a partial $\operatorname{order}(B, \leqslant)$ s.t. for any $p, q, r \in B$,
(1) p, q have a $l u b(p \vee q)$ and a $g l b(p \wedge q)$.
(2) there is a greatest element 1 and a least element 0 .
(3) p has a complement $(-p)$ s.t. $p \vee-p=1$ and $p \wedge-p=0$.
(9) $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$, $p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$.
A complete Boolean algebra is a Boolean algebra where each subset of B has a least upper bound with respect to \leqslant.

Boolean-Valued Models

Let \mathscr{L} be a first-order language. Let \mathbb{B} be a complete Boolean algebra.

Boolean Algebra

A \mathbb{B}-valued model \mathfrak{M} for \mathscr{L} consists of:
(1) A universe M of elements.
(2) Interpretation of any constant $C: \llbracket C \rrbracket \in M$.
(3) Interpretation of $=$: a function Ω from M^{2} to \mathbb{B}, and interpretation of any n-ary relation P : a function h_{P} from M^{n} to \mathbb{B}, s.t. for any $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in D$,

- $\Omega\left(x_{1}, x_{1}\right)=1$.
- $\Omega\left(x_{1}, x_{2}\right)=\Omega\left(x_{2}, x_{1}\right)$.
- $\Omega\left(x_{1}, x_{2}\right) \wedge \Omega\left(x_{2}, x_{3}\right) \leqslant \Omega\left(x_{1}, x_{3}\right)$.
- $h_{P}\left(x_{1}, \ldots, x_{n}\right) \wedge \prod_{1 \leqslant i \leqslant n} \Omega\left(x_{i}, y_{i}\right) \leqslant h_{P}\left(y_{1}, \ldots, y_{n}\right)$.

Boolean-Valued Models

Boolean-Valued Models

We define satisfaction as follows. Let $t_{1}, \ldots t_{n}$ be terms, \mathbf{x} be a variable assignment:
(1) $\llbracket C \rrbracket[\mathrm{x}]=\llbracket C \rrbracket$.
(2) $\llbracket v_{i} \rrbracket[\mathbf{x}]=x_{i}$, where $x_{i}=\mathbf{x}\left(v_{i}\right)$.
(3) $\llbracket t_{1}=t_{2} \rrbracket[\mathbf{x}]=\Omega\left(\llbracket t_{1} \rrbracket, \llbracket t_{2} \rrbracket\right)$.
(9) $\llbracket P\left(t_{1}, \ldots, t_{n}\right) \rrbracket[\mathbf{x}]=h_{P}\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)$.
(0) $\llbracket \neg \phi \rrbracket[\mathbf{x}]=\neg \llbracket \phi \rrbracket[\mathbf{x}]$.
(0) $\llbracket \phi \wedge \psi \rrbracket[\mathbf{x}]=\llbracket \phi \rrbracket[\mathbf{x}] \wedge \llbracket \psi \rrbracket[\mathbf{x}]$.
(3) $\llbracket \forall v \phi \rrbracket[\mathbf{x}]=\bigwedge_{x \in M} \llbracket \phi \rrbracket[\mathbf{x}(v / x)]$.

Classical Logic

First-order Boolean-valued models are sound and complete with respect to classical first-order logic.

Definition

Let T be a theory and ϕ be a sentence in $\mathscr{L} . T \models_{B} \phi$ iff for any Boolean-valued model \mathfrak{M} of \mathscr{L}, if $\mathfrak{M} \models T$, then $\mathfrak{M} \models \phi$.

Soundness and Completeness (Rasiowa, Sikorski)

$T \models_{B} \phi$ iff $T \vdash \phi$.

Full Models

Full models have "witnesses" for existential formulas:

Full Models

A \mathbb{B}-valued model \mathfrak{M} is full iff for any formula $\phi(v, \bar{v})$ in \mathscr{L}, any $\bar{x} \subseteq M$, there is some $x \in M$ such that $\llbracket \exists v \phi(v, \bar{x}) \rrbracket=\llbracket \phi(x, \bar{x}) \rrbracket$.

Full Models

Full models have "witnesses" for existential formulas:

Full Models

A \mathbb{B}-valued model \mathfrak{M} is full iff for any formula $\phi(v, \bar{v})$ in \mathscr{L}, any $\bar{x} \subseteq M$, there is some $x \in M$ such that $\llbracket \exists v \phi(v, \bar{x}) \rrbracket=\llbracket \phi(x, \bar{x}) \rrbracket$.

Not every Boolean-valued model is full.

Full Models

Full models have "witnesses" for existential formulas:

Full Models

A \mathbb{B}-valued model \mathfrak{M} is full iff for any formula $\phi(v, \bar{v})$ in \mathscr{L}, any $\bar{x} \subseteq M$, there is some $x \in M$ such that $\llbracket \exists v \phi(v, \bar{x}) \rrbracket=\llbracket \phi(x, \bar{x}) \rrbracket$.

Not every Boolean-valued model is full.
Full models are more "classical": some classical results in model theory can only be generalized to them.

Full Models

Full models have "witnesses" for existential formulas:

Full Models

A \mathbb{B}-valued model \mathfrak{M} is full iff for any formula $\phi(v, \bar{v})$ in \mathscr{L}, any $\bar{x} \subseteq M$, there is some $x \in M$ such that $\llbracket \exists v \phi(v, \bar{x}) \rrbracket=\llbracket \phi(x, \bar{x}) \rrbracket$.

Not every Boolean-valued model is full.
Full models are more "classical": some classical results in model theory can only be generalized to them.

Quotient Models

Let \mathfrak{M} be a \mathbb{B}-valued model and h be a homomorphism from \mathbb{B} to \mathbb{B}^{\prime}. The quotient model \mathfrak{M} / h is the \mathbb{B}^{\prime}-valued model defined as follows:
(1) The universe $M / h=\left\{[x]_{h} \mid x \in M\right\}$, where $x_{1} \equiv_{h} x_{2}$ iff $h\left(\llbracket x_{1}=x_{2} \rrbracket^{\mathfrak{M}}\right)=1_{\mathbb{B}^{\prime}}$.
(2) For any n-ary predicate $P, \llbracket P\left(\overline{[x]_{h}}\right) \rrbracket^{\mathfrak{M} / \mathfrak{h}}=h\left(\llbracket P(\bar{x}) \rrbracket^{\mathfrak{M}}\right)$.
(3) For any constant C, C refers to $\left[\llbracket C \rrbracket^{\mathfrak{M}}\right]_{h}$.

Quotient Models

Let \mathfrak{M} be a \mathbb{B}-valued model and h be a homomorphism from \mathbb{B} to \mathbb{B}^{\prime}. The quotient model \mathfrak{M} / h is the \mathbb{B}^{\prime}-valued model defined as follows:
(1) The universe $M / h=\left\{[x]_{h} \mid x \in M\right\}$, where $x_{1} \equiv_{h} x_{2}$ iff

$$
h\left(\llbracket x_{1}=x_{2} \rrbracket^{\mathfrak{M}}\right)=1_{\mathbb{B}^{\prime}} .
$$

(2) For any n-ary predicate $P, \llbracket P\left(\overline{[x]_{h}}\right) \rrbracket^{\mathfrak{M} / \mathfrak{h}}=h\left(\llbracket P(\bar{x}) \rrbracket^{\mathfrak{M}}\right)$.
(3) For any constant C, C refers to $\left[\llbracket C \rrbracket^{\mathfrak{M}}\right]_{h}$.

Generalized $Ł o s^{\prime}$ Theorem (Folklore)

Let \mathfrak{M} be a full \mathbb{B}-valued model and h be a homomorphism from \mathbb{B} to \mathbb{B}^{\prime}. For any formula $\phi(\bar{v})$, any $\bar{x} \in M, \llbracket \phi\left(\overline{[x]_{h}}\right) \rrbracket^{\mathfrak{M} / h}=\llbracket \phi(\bar{x}) \rrbracket^{\mathfrak{M}}$.

Application: Set-theoretic Forcing

The famous Scott-Solovay construction $V^{\mathbb{B}}$ is a \mathbb{B}-valued models.

Application: Set-theoretic Forcing

The famous Scott-Solovay construction $V^{\mathbb{B}}$ is a \mathbb{B}-valued models.
Moreover, it can be shown to be a full model and thus is in the scope of Łos' Theorem.

Application: Set-theoretic Forcing

The famous Scott-Solovay construction $V^{\mathbb{B}}$ is a \mathbb{B}-valued models.
Moreover, it can be shown to be a full model and thus is in the scope of Łos’ Theorem.

To prove ϕ is independent of $Z F C$: find a \mathbb{B} such that $0<\llbracket \phi \rrbracket^{V^{\mathbb{B}}}<1$. Find ultrafilters D^{+}, D^{-}on \mathbb{B} such that $\llbracket \phi \rrbracket \in D^{+}$ and $\neg \llbracket \phi \rrbracket \in D^{-}$.

Downward Löwenheim-Skolem

Elementary Submodel

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models of $\mathscr{L} . \mathfrak{M}_{1}$ is an elementary submodel of \mathfrak{M}_{2} iff for any ϕ of \mathscr{L}, any $x_{1}, \ldots, x_{n} \in M_{1}, \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{1}}=\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{2}}$.

Downward Löwenheim-Skolem

Elementary Submodel

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models of $\mathscr{L} . \mathfrak{M}_{1}$ is an elementary submodel of \mathfrak{M}_{2} iff for any ϕ of \mathscr{L}, any $x_{1}, \ldots, x_{n} \in M_{1}, \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{1}}=\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{2}}$.

Strong Downward Löwenheim-Skolem

Let \mathfrak{M} be an infinite and full \mathbb{B}-valued model of \mathscr{L}. Then \mathfrak{M} has an elementary submodel of size $|\mathscr{L}|$.

Downward Löwenheim-Skolem

Elementary Submodel

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models of $\mathscr{L} . \mathfrak{M}_{1}$ is an elementary submodel of \mathfrak{M}_{2} iff for any ϕ of \mathscr{L}, any $x_{1}, \ldots, x_{n} \in M_{1}, \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{1}}=\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{2}}$.

Strong Downward Löwenheim-Skolem

Let \mathfrak{M} be an infinite and full \mathbb{B}-valued model of \mathscr{L}. Then \mathfrak{M} has an elementary submodel of size $|\mathscr{L}|$.

Just as the Łos' Theorem, this only holds on full models:

Observation

There exists a Boolean-valued model that does not have a countable elementary submodel.

Boolean Valuations

Rasiowa and Sikorski's theorems only concern sentences with truth value 1 in Boolean-valued models.

Boolean Valuations

Rasiowa and Sikorski's theorems only concern sentences with truth value 1 in Boolean-valued models.

But when there are more than two truth values, we want something stronger, since knowing which sentences have value 1 does not let us know the values of all sentences in a model.

Boolean Valuations

Rasiowa and Sikorski's theorems only concern sentences with truth value 1 in Boolean-valued models.

But when there are more than two truth values, we want something stronger, since knowing which sentences have value 1 does not let us know the values of all sentences in a model.

Boolean-Valuation

A Boolean-valuation $S^{\mathbb{B}}$ in \mathscr{L} is a set of pairs of the form $\langle\phi, p\rangle$ such that ϕ is a sentence of \mathscr{L} and p is an element of \mathbb{B}.

Boolean Valuations

Rasiowa and Sikorski's theorems only concern sentences with truth value 1 in Boolean-valued models.

But when there are more than two truth values, we want something stronger, since knowing which sentences have value 1 does not let us know the values of all sentences in a model.

Boolean-Valuation

A Boolean-valuation $S^{\mathbb{B}}$ in \mathscr{L} is a set of pairs of the form $\langle\phi, p\rangle$ such that ϕ is a sentence of \mathscr{L} and p is an element of \mathbb{B}.

Definition

A \mathbb{B}-valued model \mathfrak{M} is a model of, or satisfies $S^{\mathbb{B}}$ iff for any sentence $\phi \in \mathscr{L}$, for any $p \in \mathbb{B}$, if $\langle\phi, p\rangle \in S^{\mathbb{B}}$, then $\llbracket \phi \rrbracket^{\mathfrak{M}}=p$.

Boolean Valuations

What does it mean for a Boolean-valuation to be consistent?

Boolean Valuations

What does it mean for a Boolean-valuation to be consistent?

Consistency

Let $S^{\mathbb{B}}$ be a Boolean-valuation of \mathscr{L}. Let $h: \mathbb{B} \rightarrow 2$ be a homomorphism. $S_{h}^{\mathbb{B}}$ is the following set of sentences: for any $\phi \in \mathscr{L}$, any $p \in B$,
(1) If $\langle\phi, p\rangle \in S^{\mathbb{B}}$ and $h(p)=1$, then $\phi \in S_{h}^{\mathbb{B}}$.
(2) If $\langle\phi, p\rangle \in S^{\mathbb{B}}$ and $h(p)=0$, then $\neg \phi \in S_{h}^{\mathbb{B}}$.
(3) Nothing else is in $S_{h}^{\mathbb{B}}$.

A Boolean-valuation $S^{\mathbb{B}}$ is consistent if and only if for any homomorphism $h: \mathbb{B} \rightarrow 2, S_{h}^{\mathbb{B}}$ is a consistent theory.

Boolean Valuations

Lemma
Let $S^{\mathbb{B}}$ be a consistent Boolean-valuation. For any sentence $\phi \in \mathscr{L}$, for some $p \in \mathbb{B}, S^{\mathbb{B}} \cup\{\phi, p\}$ is consistent.

Boolean Valuations

Lemma

Let $S^{\mathbb{B}}$ be a consistent Boolean-valuation. For any sentence $\phi \in \mathscr{L}$, for some $p \in \mathbb{B}, S^{\mathbb{B}} \cup\{\phi, p\}$ is consistent.

Lemma

Every consistent Boolean-valuation is contained in some maximal consistent Boolean-valuation.

Boolean Valuations

Lemma

Let $S^{\mathbb{B}}$ be a consistent Boolean-valuation. For any sentence $\phi \in \mathscr{L}$, for some $p \in \mathbb{B}, S^{\mathbb{B}} \cup\{\phi, p\}$ is consistent.

Lemma

Every consistent Boolean-valuation is contained in some maximal consistent Boolean-valuation.

Completeness

Let $S^{\mathbb{B}}$ be a consistent Boolean-valuation of \mathscr{L}. Then $S^{\mathbb{B}}$ has a full \mathbb{B}-valued model of size $\leqslant|\mathscr{L}|$.

Boolean Valuations

Weak Downward Löwenheim-Skolem

If $S^{\mathbb{B}}$ has a \mathbb{B}-valued model, then it has a full \mathbb{B}-valued model of size $\leqslant|\mathscr{L}|$.

Boolean Valuations

Weak Downward Löwenheim-Skolem

If $S^{\mathbb{B}}$ has a \mathbb{B}-valued model, then it has a full \mathbb{B}-valued model of size $\leqslant|\mathscr{L}|$.

Soundness

If $S^{\mathbb{B}}$ has a \mathbb{B}-valued model, then $S^{\mathbb{B}}$ is consistent.

Boolean Valuations

Weak Downward Löwenheim-Skolem

If $S^{\mathbb{B}}$ has a \mathbb{B}-valued model, then it has a full \mathbb{B}-valued model of size $\leqslant|\mathscr{L}|$.

Soundness

If $S^{\mathbb{B}}$ has a \mathbb{B}-valued model, then $S^{\mathbb{B}}$ is consistent.

Compactness

$S^{\mathbb{B}}$ has a \mathbb{B}-valued model iff every finite subset of $S^{\mathbb{B}}$ has a B-valued model.

Elementary Submodel and Elementary Diagram

Elementary Submodel

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models of $\mathscr{L} . \mathfrak{M}_{1}$ is an elementary submodel of \mathfrak{M}_{2} iff for any ϕ of \mathscr{L}, any $x_{1}, \ldots, x_{n} \in M_{1}, \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{1}}=\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{2}}$.

Elementary Submodel and Elementary Diagram

Elementary Submodel

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models of $\mathscr{L} . \mathfrak{M}_{1}$ is an elementary submodel of \mathfrak{M}_{2} iff for any ϕ of \mathscr{L}, any $x_{1}, \ldots, x_{n} \in M_{1}, \llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{1}}=\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}_{2}}$.

Elementary Diagram

Let \mathfrak{M} be a \mathbb{B}-valued model of \mathscr{L}. Let $\mathscr{L}_{\mathfrak{M}}=\mathscr{L} \cup\left\{C_{x} \mid x \in M\right\}$, where $\left\{C_{x} \mid x \in M\right\}$ is a new set of constants, one for each $x \in M$. The canonical expansion of \mathfrak{M} to $\mathscr{L}_{\mathfrak{M}}$ is the model \mathfrak{M}^{*} where for all $x \in M, \llbracket C_{x} \rrbracket^{\mathfrak{M}^{*}}=x$.
The elementary diagram of \mathfrak{M} is the \mathfrak{B}-valuation $S_{\mathfrak{M}}^{\mathbb{B}}$ which consists of and only of all the pairs of the form $\left\langle\phi, \llbracket \phi \rrbracket^{\mathfrak{M}^{*}}\right\rangle$ where ϕ is a sentence of $\mathscr{L}_{\mathfrak{A}}$ and $\llbracket \phi \rrbracket^{\mathfrak{M}^{*}}$ is the value of ϕ in \mathfrak{M}^{*}.

Full Elementary Extension

Equivalence

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models. TFAE:
(1) \mathfrak{M}_{1} is isomorphic to an elementary submodel of \mathfrak{M}_{2}.
(2) \mathfrak{M}_{2} can be expanded to a model of the elementary diagram of \mathfrak{M}_{1}.

Full Elementary Extension

Equivalence

Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be two \mathbb{B}-valued models. TFAE:
(1) \mathfrak{M}_{1} is isomorphic to an elementary submodel of \mathfrak{M}_{2}.
(2) \mathfrak{M}_{2} can be expanded to a model of the elementary diagram of \mathfrak{M}_{1}.

Using this equivalence and the Completeness theorem on Boolean-valuations:

Corollary

Every Boolean-valued model has a full elementary extension.

Application: Forcing with Urelements

The existing method (Blass, Ščedrov) of constructing Scott-Solovay style models of set theory with urelements gives us Boolean-valued models that are not full.

Application: Forcing with Urelements

The existing method (Blass, Ščedrov) of constructing Scott-Solovay style models of set theory with urelements gives us Boolean-valued models that are not full.

This is a problem, as the method for obtaining relative consistency results via the Łos' Theorem requires full models.

Application: Forcing with Urelements

The existing method (Blass, Ščedrov) of constructing Scott-Solovay style models of set theory with urelements gives us Boolean-valued models that are not full.

This is a problem, as the method for obtaining relative consistency results via the Łos' Theorem requires full models.

But the result on the previous slide solves the problem, as we can use $Ł o s^{\prime}$ Theorem on their elementary extensions.

Mixed Models

Mixed Models

A \mathbb{B}-valued model \mathfrak{M} is mixed iff for any antichain $\left\{p_{i} \mid i \in I\right\} \subseteq \mathbb{B}$ and any $\left\{x_{i} \mid i \in I\right\} \subseteq M$, there is some $x \in M$ such that for any $i \in I, p_{i} \leqslant \llbracket x=x_{i} \rrbracket$.

Mixed Models

Mixed Models

A \mathbb{B}-valued model \mathfrak{M} is mixed iff for any antichain $\left\{p_{i} \mid i \in I\right\} \subseteq \mathbb{B}$ and any $\left\{x_{i} \mid i \in I\right\} \subseteq M$, there is some $x \in M$ such that for any $i \in I, p_{i} \leqslant \llbracket x=x_{i} \rrbracket$.

What is the connection between mixed models and full models?

Mixed Models

Mixed Models

A \mathbb{B}-valued model \mathfrak{M} is mixed iff for any antichain $\left\{p_{i} \mid i \in I\right\} \subseteq \mathbb{B}$ and any $\left\{x_{i} \mid i \in I\right\} \subseteq M$, there is some $x \in M$ such that for any $i \in I, p_{i} \leqslant \llbracket x=x_{i} \rrbracket$.

What is the connection between mixed models and full models?

Highly Full Models

A \mathbb{B}-valued model \mathfrak{M} is highly full iff for any language \mathscr{L}^{\prime} that expands \mathscr{L}, any expansion \mathfrak{M}^{\prime} of \mathfrak{M} to $\mathscr{L}^{\prime}, \mathfrak{M}^{\prime}$ is full.

Mixed Models

Mixed Models

A \mathbb{B}-valued model \mathfrak{M} is mixed iff for any antichain $\left\{p_{i} \mid i \in I\right\} \subseteq \mathbb{B}$ and any $\left\{x_{i} \mid i \in I\right\} \subseteq M$, there is some $x \in M$ such that for any $i \in I, p_{i} \leqslant \llbracket x=x_{i} \rrbracket$.

What is the connection between mixed models and full models?

Highly Full Models

A \mathbb{B}-valued model \mathfrak{M} is highly full iff for any language \mathscr{L}^{\prime} that expands \mathscr{L}, any expansion \mathfrak{M}^{\prime} of \mathfrak{M} to $\mathscr{L}^{\prime}, \mathfrak{M}^{\prime}$ is full.

Theorem

\mathfrak{M} is mixed iff for \mathfrak{M} is highly full.

Mixed Models

Mixed models are even more "classical" than full models:

Mixed Models

Mixed models are even more "classical" than full models:

Theorem

Let \mathfrak{M} be a mixed \mathbb{B}-valued model of a countable language \mathscr{L}. Let $h: \mathbb{B} \rightarrow 2$ be a countably incomplete homomorphism. Then the quotient model \mathfrak{M} / h is ω_{1}-saturated.

Mixed Models

Mixed models are even more "classical" than full models:

Theorem

Let \mathfrak{M} be a mixed \mathbb{B}-valued model of a countable language \mathscr{L}. Let $h: \mathbb{B} \rightarrow 2$ be a countably incomplete homomorphism. Then the quotient model \mathfrak{M} / h is ω_{1}-saturated.

Theorem

Let \mathfrak{M} be a mixed \mathbb{B}-valued model and $h: \mathbb{B} \rightarrow \mathbb{C}$ be a homomorphism. Then, for any Σ_{1}^{1} formula ϕ, any $x_{1}, \ldots, x_{n} \in M, h\left(\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}}\right) \leqslant \llbracket \phi\left(\left[x_{1}\right]_{h}, \ldots,\left[x_{n}\right]_{h}\right) \rrbracket^{\mathfrak{M} / h}$.

Mixed Models

Mixed models are even more "classical" than full models:

Theorem

Let \mathfrak{M} be a mixed \mathbb{B}-valued model of a countable language \mathscr{L}. Let $h: \mathbb{B} \rightarrow 2$ be a countably incomplete homomorphism. Then the quotient model \mathfrak{M} / h is ω_{1}-saturated.

Theorem

Let \mathfrak{M} be a mixed \mathbb{B}-valued model and $h: \mathbb{B} \rightarrow \mathbb{C}$ be a homomorphism. Then, for any Σ_{1}^{1} formula ϕ, any $x_{1}, \ldots, x_{n} \in M, h\left(\llbracket \phi\left(x_{1}, \ldots, x_{n}\right) \rrbracket^{\mathfrak{M}}\right) \leqslant \llbracket \phi\left(\left[x_{1}\right]_{h}, \ldots,\left[x_{n}\right]_{h}\right) \rrbracket^{\mathfrak{M} / h}$.

Conjecture

Every Boolean-valued model has a mixed elementary extension.

Thank you for listening! :)

