Strong Kleene Supervaluation and Theories of Naive Truth

Johannes Stern

Bristol Logic Meeting

Setting Expectations

Setting Expectations

"Let us stop calling calling exercises "Theorems" and label the next one an "Example". " (Smorynski, 1985, p. 293)

Setting Expectations

"Let us stop calling calling exercises "Theorems" and label the next one an "Example". " (Smorynski, 1985, p. 293)

► We unashamedly call exercises "Propositions", "Theorems", or "Lemmas"...

Introduction

Tarski and Truth

- Convention T
- Undefinability Theorem
- ▶ Defining truth in an "essentially stronger metalanguage".
- Typing and hierarchies
- Self-applicability?

Kripke and Truth

- ▶ Partial logics and positive inductive definitions
- ► Modified convention T

Kripke and Truth

- Partial logics and positive inductive definitions
- Modified convention T

Classical supervaluation

- Quantification over (classical) admissible precisification;
- ▶ Vindicates all first-order logical truths.

Kripke and Truth

- Partial logics and positive inductive definitions
- Modified convention T

Classical supervaluation

- Quantification over (classical) admissible precisification;
- ► Vindicates all first-order logical truths.

Many-valued logic

- Compositional truth-conditions;
- ► Conditionals/Conditional reasoning?

Naivity

A truth theory Th is called naive iff for all sentences $\boldsymbol{\varphi}$

$$\varphi \in \operatorname{Th} \operatorname{iff} \operatorname{T}^{\scriptscriptstyle \lceil} \varphi^{\scriptscriptstyle \rceil} \in \operatorname{Th}.$$

Naivity

A truth theory Th is called naive iff for all sentences φ

$$\varphi \in \operatorname{Th} \operatorname{iff} \operatorname{T}^{\Gamma} \varphi^{\gamma} \in \operatorname{Th}.$$

Transparency

A truth theory Th is called transparent iff for all sentences φ,ψ

$$\psi(\varphi/p) \in \mathsf{Th} \, \mathsf{iff} \, \psi(\mathsf{T}^{\vdash} \varphi^{\urcorner}/p) \in \mathsf{Th}.$$

Naivity

A truth theory Th is called naive iff for all sentences φ

$$\varphi \in \operatorname{Th} \operatorname{iff} \mathsf{T}^{\scriptscriptstyle \lceil} \varphi^{\scriptscriptstyle \rceil} \in \operatorname{Th}.$$

Transparency

A truth theory Th is called transparent iff for all sentences φ,ψ

$$\psi(\varphi/p) \in \mathsf{Th} \, \mathsf{iff} \, \psi(\mathsf{T}^{\vdash} \varphi^{\lnot}/p) \in \mathsf{Th}.$$

Denoting Conditionals

Focus on the determiner Every

Naivity

A truth theory Th is called naive iff for all sentences φ

$$\varphi \in \operatorname{Th} \operatorname{iff} \mathsf{T}^{\scriptscriptstyle \lceil} \varphi^{\scriptscriptstyle \rceil} \in \operatorname{Th}.$$

Transparency

A truth theory Th is called transparent iff for all sentences φ,ψ

$$\psi(\varphi/p) \in \mathsf{Th} \, \mathsf{iff} \, \psi(\mathsf{T}^{\vdash} \varphi^{\lnot}/p) \in \mathsf{Th}.$$

Denoting Conditionals

Focus on the determiner Every

- $\blacktriangleright \forall x \varphi := \text{Every}_x(\top, \varphi);$
- $ightharpoonup \varphi
 ightarrow \psi := \operatorname{Every}_{x}(\varphi, \psi) \text{ with } x \not\in \operatorname{FV}(\varphi \wedge \psi).$

Truth, Conditionals, and Curry

Let κ be the sentence

$$\mathsf{Every}_x \big(x = \lceil \kappa \rceil \land \mathsf{T} x, x \neq x \big)$$

Truth, Conditionals, and Curry

Let κ be the sentence

$$\mathsf{Every}_{x}(x = \lceil \kappa \rceil \wedge \mathsf{T} x, x \neq x)$$

- Curry's paradox main obstacle for conditionals/RQ in non-classical truth theories.
- Orthodox TC: κ is true iff κ is not in the interpretation of the truth predicate.
- No naive truth models with orthodox TCs

More on Curry

We cannot have

- ► Transparency, structural rules, and deduction theorem
- ► Transparency + MP + \rightarrow -contraction + \rightarrow -reflexivity

More on Curry

We cannot have

- Transparency, structural rules, and deduction theorem
- ► Transparency + MP + \rightarrow -contraction + \rightarrow -reflexivity

Logicality: Truth vs Conditional

- Logicality of →: Conditional defined relative to a model class also containing non-naive truth models.
- ▶ **Logicality of truth**: Conditional defined relative to naive truth models only; loss of crucial logical properties of \rightarrow .

More on Curry

We cannot have

- Transparency, structural rules, and deduction theorem
- ► Transparency + MP + \rightarrow -contraction + \rightarrow -reflexivity

Logicality: Truth vs Conditional

- Logicality of →: Conditional defined relative to a model class also containing non-naive truth models.
- ▶ **Logicality of truth**: Conditional defined relative to naive truth models only; loss of crucial logical properties of \rightarrow .
- ▶ We opt for the logicality of \rightarrow .

Conditionals and Truth in Partial Logics

Aim

Construct a naive truth model with a "logical" conditional.

- ► Conditional interpreted as truth preservation
- Not local: the naive truth model needs to "see" non-naive models
- stability under semantic precisifications/local domain extensions ("Monotonicity")
- Form of intuitionistic conditional

Strong Kleene Supervaluation

Strong Kleene Supervaluation

Supervaluation structure \mathfrak{M}

A tuple (D, X, H) such that $D \neq \emptyset$ and

- ▶ X is a set of partial (strong Kleene) interpretations such that for all $I, J \in X$ and all closed terms t
 - ightharpoonup J(t) = I(t)
- \vdash $H \subseteq X \times X$ such that
 - H is transitive
 - ▶ if $(I, J) \in H$, then $I \leq J$.

Truth relative to an Interpretation

Let
$$J \in X$$
 and $\|\chi\|_X^{J,\beta} = \{d \in D \mid \mathfrak{M}, J \Vdash \varphi[\beta(x:d)]\}$.:

$$\begin{split} \mathfrak{M}, J \Vdash \mathsf{Every}_{\mathbf{x}}(\varphi, \psi)[\beta] & \quad \mathsf{iff} \ \forall J'((J, J') \in H \Rightarrow \|\varphi\|_{\mathbf{x}}^{J', \beta} \subseteq \|\psi\|_{\mathbf{x}}^{J', \beta}) \\ \mathfrak{M}, J \Vdash \neg \mathsf{Every}_{\mathbf{x}}(\varphi, \psi)[\beta] & \quad \mathsf{iff} \ \|\varphi\|_{\mathbf{x}}^{J, \beta} \cap \|\neg \psi\|_{\mathbf{x}}^{J, \beta}) \neq \emptyset \end{split}$$

strong Kleene truth for remaining clauses.

Taking Stock

Non-classical supervaluation

Constant domain intuitionistic Kripke frames with inclusion negation.

Taking Stock

Non-classical supervaluation

Constant domain intuitionistic Kripke frames with inclusion negation.

Logic

- Corresponds to Nelson logic (N3);
 - ightharpoonup ightharpoonup: sk-sequent arrow in object lang.
- Disjunction and existence property;
- Some flexibility:
 - Use fde-style semantics: N4, Hype (QN*),...
 - Strengthening of tc for Every to allow for contraposition

Truth

Interpreting Truth

Expand supervaluation structure $\mathfrak{M}=(D,X,H)$ for \mathcal{L} to an supervaluation structure for \mathcal{L}_T

Assumptions

- \triangleright \mathcal{L} extends the language of some syntax theory \mathcal{L}_S , e.g., the language of arithmetic;
- \triangleright \mathcal{L} contains names of all elements of D;
- ▶ for all $\varphi \in \mathcal{L}_S$; $J, J' \in X$ and assignments β .
 - $\blacktriangleright \mathfrak{M}, J \Vdash \varphi[\beta] \text{ iff } \mathfrak{M}, J' \Vdash \varphi[\beta]$

Valuation on M

Function that assigns an interpretation to the truth predicate relative to a world and an interpretation:

▶ $f: X \to \mathcal{P}(\mathsf{Sent})$

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_T$:

$$\varphi \notin f(J)$$
 or $\neg \varphi \notin f(J)$;

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_{T}$:

$$\varphi \notin f(J)$$
 or $\neg \varphi \notin f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M},J) \Vdash \varphi$;

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_{T}$:

$$\varphi \not\in f(J)$$
 or $\neg \varphi \not\in f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M}, J) \Vdash \varphi$;

▶ for all $J, J' \in X$, if $(J, J') \in H$, then $f(J) \subseteq f(J')$.

 $\text{Val}^{\text{Adm}}_{\mathfrak{M}}$ denotes the set of admissible interpretations on $\mathfrak{M}.$

Not all valuations are equally good. A valuation f is admissible on $\mathfrak{M}=(D,X,H)$ iff

▶ f is consistent, i.e., if for all $J \in X$ and $\varphi \in \mathcal{L}_{T}$:

$$\varphi \notin f(J)$$
 or $\neg \varphi \notin f(J)$;

▶ for all $J \in X$ and $\varphi \in \mathcal{L}$:

if
$$\varphi \in f(J)$$
, then $(\mathfrak{M},J) \Vdash \varphi$;

for all $J, J' \in X$, if $(J, J') \in H$, then $f(J) \subseteq f(J')$.

 $Val^{Adm}_{\mathfrak{M}}$ denotes the set of admissible interpretations on $\mathfrak{M}.$

Truth Interpretation

Let $J \in X$ and f an admissible valuation, then J_f is a called a truth-interpretation for the language \mathcal{L}_T :

$$J_f(P) := \begin{cases} f(J), & \text{if } P \doteq T; \\ J(P), & \text{otherwise.} \end{cases}$$

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w,J) \subseteq g(J)$, for all $J \in X$.

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w, J) \subseteq g(J)$, for all $J \in X$.

Admissibility condition

A function $\Phi: Val_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ is called an admissibility condition iff

if
$$g \in \Phi(f)$$
, then $f \leq g$.

- \triangleright Φ yields the admissible precisifications of an valuations f
- ▶ Φ induces an ordering on $Val^{Adm}_{\mathfrak{M}}: f \leq_{\Phi} g : \leftrightarrow g \in \Phi(f)$.

Admissibility Condition

Ordering

Let f, g be valuations of \mathfrak{M} . Then $f \leq g$ iff $f(w, J) \subseteq g(J)$, for all $J \in X$.

Admissibility condition

A function $\Phi: Val_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ is called an admissibility condition iff

if
$$g \in \Phi(f)$$
, then $f \leq g$.

- lacktriangle Φ yields the admissible precisifications of an valuations f
- ▶ Φ induces an ordering on $Val^{Adm}_{\mathfrak{M}}: f \leq_{\Phi} g : \leftrightarrow g \in \Phi(f)$.

Further Assumptions:

- \triangleright \leq_{Φ} is transitive
- ▶ if $f \le g$, then $\Phi(g) \subseteq \Phi(f)$.

Truth Structure

Let $\mathfrak{M}=(D,X,H)$ be a supervaluation structure and $Y\subseteq \operatorname{Val}^{\operatorname{Adm}}_{\mathfrak{M}}$. Then the tupel $(D,X\times Y,H_{\Phi})$ is called a **truth structure** iff for all $I,J\in X$ and $f,g\in Y$:

$$(I_f, J_g) \in H_{\Phi} : \leftrightarrow (I, J) \in H \& f \leq_{\Phi} g.$$

Truth Structure

Let $\mathfrak{M}=(D,X,H)$ be a supervaluation structure and $Y\subseteq \operatorname{Val}^{\operatorname{Adm}}_{\mathfrak{M}}$. Then the tupel $(D,X\times Y,H_{\Phi})$ is called a **truth structure** iff for all $I,J\in X$ and $f,g\in Y$:

$$(I_f, J_g) \in H_{\Phi} : \leftrightarrow (I, J) \in H \& f \leq_{\Phi} g.$$

Grounded Truth Structure

Let $\mathfrak{M}_{\mathbb{T}} = (D, X \times Y, H_{\Phi})$ be a truth structure. If there is an $f \in Y$ such that $Y \cap \Phi(f) \neq \emptyset$ and $f \leq g$ for all $g \in Y$, then $\mathfrak{M}_{\mathbb{T}}$ is called a **grounded truth structure**. A set Y_f with minimal element f is called a grounded truth set.

Truth Structures and Kripkean Truth

- ► Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Truth Structures and Kripkean Truth

- ▶ Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Aim

Find a grounded truth structure \mathfrak{M}_T with minimal $f \in Y$ such that for all $J \in X$, $w \in W$ and $\varphi \in \mathcal{L}_T$:

$$\mathfrak{M}_{\mathrm{T}}, J_f \Vdash \mathrm{T}^{\vdash} \varphi^{\lnot} \text{ iff } \mathfrak{M}_{\mathrm{T}}, J_f \Vdash \varphi.$$

Truth Structures and Kripkean Truth

- ▶ Truth structure give an interpretation of \mathcal{L}_T ;
- ▶ No guarantee that interpretation of T is truth-like;

Aim

Find a grounded truth structure \mathfrak{M}_T with minimal $f \in Y$ such that for all $J \in X$, $w \in W$ and $\varphi \in \mathcal{L}_T$:

$$\mathfrak{M}_{\mathrm{T}}, J_f \Vdash \mathrm{T}^{\vdash} \varphi^{\sqcap} \text{ iff } \mathfrak{M}_{\mathrm{T}}, J_f \Vdash \varphi.$$

Transparency is out of reach!

Fixed Points

Definition (Compactness of Φ)

```
Set \Phi(X) = \{\Phi(f) | f \in X\}. \Phi is compact on \operatorname{Val}_{\mathfrak{M}}^{\operatorname{Adm}} iff for all X \subseteq \operatorname{Val}_{\mathfrak{M}}^{\operatorname{Adm}}: if \Phi(f_1) \cap \ldots \cap \Phi(f_n) \neq \emptyset for all n \in \omega and f_1, \ldots f_n \in X, then \bigcap \Phi(X) \neq \emptyset.
```

Fixed Points

Definition (Compactness of Φ)

Set $\Phi(X) = \{\Phi(f) | f \in X\}$. Φ is compact on $\operatorname{Val}_{\mathfrak{M}}^{\operatorname{Adm}}$ iff for all $X \subseteq \operatorname{Val}_{\mathfrak{M}}^{\operatorname{Adm}}$: if $\Phi(f_1) \cap \ldots \cap \Phi(f_n) \neq \emptyset$ for all $n \in \omega$ and $f_1, \ldots f_n \in X$, then $\bigcap \Phi(X) \neq \emptyset$.

Proposition

Let $\mathfrak{M}=(D,X,H)$ be a supervaluation structure and Φ compact on $\operatorname{Val}^{\operatorname{Adm}}_{\mathfrak{M}}$. Then there exists a grounded truth set Y_f and admissible valuation function f such that for all $\varphi \in \operatorname{Sent}_{\mathcal{L}_T}$

$$(D, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \text{ iff } (D, X \times Y_f, H_{\Phi}), J_f \Vdash T^{\vdash} \varphi^{\urcorner}$$

for all $J \in X$.

Some more specifics

Let $Adm_{\mathfrak{M}}$ be the set of grounded truth sets. Define two operations:

▶ $\theta_{\mathfrak{M}}^{\Phi}: Val_{\mathfrak{M}}^{Adm} \times Adm_{\mathfrak{M}} \rightarrow Val_{\mathfrak{M}}$ such that for all $f \in Y_f \in Adm_{\mathfrak{M}}$ and $J \in X$:

$$[\theta_{\mathfrak{M}}^{\Phi}(f, Y_f)](J) := \{ \varphi \mid (F, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \}$$

▶ $\Theta_{\mathfrak{M}}^{\Phi}$: Adm $_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ such that for all $Y_f \in Adm_{\mathfrak{M}}$:

$$\Theta_{\mathfrak{M}}^{\Phi}(Y_f) = \{ g \in Y_f \mid \theta_{\mathfrak{M}}^{\Phi}(Y_f, f) \leq g \}.$$

Some more specifics

Let $Adm_{\mathfrak{M}}$ be the set of grounded truth sets. Define two operations:

▶ $\theta_{\mathfrak{M}}^{\Phi}: Val_{\mathfrak{M}}^{Adm} \times Adm_{\mathfrak{M}} \rightarrow Val_{\mathfrak{M}}$ such that for all $f \in Y_f \in Adm_{\mathfrak{M}}$ and $J \in X$:

$$[\theta_{\mathfrak{M}}^{\Phi}(f, Y_f)](J) := \{ \varphi \mid (F, X \times Y_f, H_{\Phi}), J_f \Vdash \varphi \}$$

▶ $\Theta_{\mathfrak{M}}^{\Phi}$: Adm $_{\mathfrak{M}} \to \mathcal{P}(Val_{\mathfrak{M}}^{Adm})$ such that for all $Y_f \in Adm_{\mathfrak{M}}$:

$$\Theta_{\mathfrak{M}}^{\Phi}(Y_f) = \{ g \in Y_f \mid \theta_{\mathfrak{M}}^{\Phi}(Y_f, f) \leq g \}.$$

Observation

Let $f \in Y_f \in Adm_{\mathfrak{M}}$. Then

$$\theta(Y_f, f) = f \text{ iff } \Theta(Y_f) = Y_f.$$

Iterating Θ

$$\Theta^{\alpha}(Y_f) := \begin{cases} Y_f, & \text{if } \alpha = 0; \\ \Theta(\Theta^{\beta}(Y_f)), & \text{if } \alpha = \beta + 1 \text{ and } \Theta^{\beta}(Y_f) \in \operatorname{Adm}_{\mathfrak{M}}; \\ \emptyset, & \text{if } \alpha = \beta + 1 \text{ and } \Theta^{\beta}(Y_f) \not\in \operatorname{Adm}_{\mathfrak{M}}; \\ \bigcap_{\beta \leq \alpha} (\Theta^{\beta}(Y_f), & \text{if } \alpha \text{ is limit.} \end{cases}$$

$$\theta^{\alpha}(Y_f, f) := \begin{cases} (Y_f, f), & \text{if } \alpha = 0 \\ \theta(\Theta^{\beta}(Y_f), \theta^{\beta}(Y_f, f)), & \text{if } \alpha = \beta + 1 \& \Theta^{\beta}(Y_f) \neq \emptyset; \\ \emptyset, & \text{if } \alpha = \beta + 1 \& \Theta^{\beta}(Y_f) = \emptyset; \\ \bigcup_{\beta < \alpha} \theta^{\beta}(Y_f, f), & \text{if } \alpha \text{ is limit.} \end{cases}$$

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \notin \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \mid f \leq g \& g \text{ is (N3)-naive}\}, & \text{otherwise.} \end{cases}$$

 $ightharpoonup \Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \notin \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \, | \, f \leq g \, \& \, g \, \text{is (N3)-naive} \}, & \text{otherwise.} \end{cases}$$

▶ $\Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

Proposition (Φ_{Nve} -fixed points)

Let $\mathfrak{M} = (D, X, H)$ be a supervaluation structure. The there exists a grounded truth set Y_f

$$\theta(Y_f, f) = f$$
 and $\Theta(Y_f) = Y_f$

with admissibility condition Φ_{Nve} .

'Naive' Fixed Point Property

$$\Phi_{\mathsf{Nve}}(f) := \begin{cases} \emptyset, & \text{if } f \notin \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \,|\, f \leq g \& g \text{ is (N3)-naive}\}, & \text{otherwise.} \end{cases}$$

▶ $\Phi_{Nve}(f)$ is compact on $Val_{\mathfrak{M}}^{Adm}$

Proposition (Φ_{Nve} -fixed points)

Let $\mathfrak{M} = (D, X, H)$ be a supervaluation structure. The there exists a grounded truth set Y_f

$$\theta(Y_f, f) = f$$
 and $\Theta(Y_f) = Y_f$

with admissibility condition Φ_{Nve} .

Naive valuation functions and transparency

▶ N3-logical truths

- ► N3-logical truths
- ► Closure under Nec and Conec

- ▶ N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save →:
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $\blacktriangleright \ \, \mathrm{T}(x \wedge y) \leftrightarrow \mathrm{T}x \wedge \mathit{T}y$

- ▶ N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save \rightarrow :
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $T(x \land y) \leftrightarrow Tx \land Ty$
- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\Gamma}\mathrm{T}t^{\gamma}$

- N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save →:
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$
 - $T(x \land y) \leftrightarrow Tx \land Ty$
- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\sqcap}\mathrm{T}t^{\sqcap}$
- ► Truth-principles for \rightarrow :
 - ightharpoonup $Tx \wedge T(x \rightarrow y) \rightarrow Ty$
 - $T(\neg x \lor y) \to T(x \to y)$

- N3-logical truths
- Closure under Nec and Conec
- ▶ truth commutation axioms for all logical connectives save \rightarrow :
 - ightharpoonup $\neg Tx \leftrightarrow T \neg x$

$$ightharpoonup$$
 $T(x \land y) \leftrightarrow Tx \land Ty$

- truth-iteration axioms:
 - ightharpoonup $\mathrm{T}t\leftrightarrow\mathrm{T}^{\Gamma}\mathrm{T}t^{\gamma}$
- ► Truth-principles for \rightarrow :
 - ightharpoonup $Tx \wedge T(x \rightarrow y) \rightarrow Ty$
 - $T(\neg x \lor y) \to T(x \to y)$

Deduction Theorem

Let J_f a fixed-point and \mathfrak{M}_{J_f} the J_f generated substructure of \mathfrak{M} . Then

$$\Gamma, \varphi \vDash_{\mathfrak{M}_{J_{\mathbf{f}}}} \psi \text{ iff } \Gamma \vDash_{\mathfrak{M}_{J_{\mathbf{f}}}} \varphi \rightarrow \psi$$

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- lacktriangle requires admissible precisifications to be ω -complete

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out
- Strong Kleene supervaluation has the existence property

- $\forall x \mathrm{T} \varphi(\dot{x}) \leftrightarrow \mathrm{T} \forall v (\varphi(v/x))$
- ightharpoonup requires admissible precisifications to be ω -complete
- not a compact property
- contrast to classical SV not ruled out
- Strong Kleene supervaluation has the existence property

θ -compactness

If
$$\Phi(\theta^{\alpha}(f, Y_f)) \cap Y_f \neq \emptyset$$
 for $\alpha \leq \xi$, then $\Phi(\theta^{\xi}(f, Y_f)) \cap Y_f \neq \emptyset$.

- ▶ $\Phi(\theta^{\xi}(f, Y_f))$ is not ω-inconsistent.
- **Consistent** in ω -logic?

N3-saturation?

ω -consistency

There are fixed points for

$$\Phi_{\omega-\mathsf{Nve}}(f) := \begin{cases} \emptyset, \text{ if } f \not\in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}}; \\ \{g \in \mathsf{Val}^{\mathsf{Adm}}_{\mathfrak{M}} \,|\, f \leq g \,\&\, g \text{ is naive a. } \omega \text{ cons.}\}, \text{ else.} \end{cases}$$

Question

Can we find fixed for Φ selecting

- ► N3-saturated precisifications/sets
- ▶ N3-saturated and naive precisifications/sets

Complexity

- \triangleright \mathcal{L}_S be the language of arithmetic;
- ▶ $D = \omega$ with (D, J) an extension of the standard model for all $J \in X$.

Complexity

- \triangleright \mathcal{L}_S be the language of arithmetic;
- ▶ $D = \omega$ with (D, J) an extension of the standard model for all $J \in X$.

Lemma

```
Let \mathfrak{M}_{\mathrm{T}} = (D, X \times Y_f, H_{\Phi_{\mathrm{Nve}}} \text{ with } f \in \mathrm{Val}_{\mathfrak{M}}^{\mathrm{Adm}} \text{ and } Y_f = \{g \in \mathrm{Val}_{\mathfrak{M}}^{\mathrm{Adm}} \mid f \leq g\}. \text{ Then, } f \leq \theta_{\mathfrak{M}_{\mathrm{T}}}(f, Y_f) \text{ implies that } [\theta_{\mathfrak{M}_{\mathrm{T}}}(f, Y_f)](J) \text{ is a } \Pi_1^1\text{-hard for all } J \in X.
```

Complexity

- \triangleright \mathcal{L}_S be the language of arithmetic;
- ▶ $D = \omega$ with (D, J) an extension of the standard model for all $J \in X$.

Lemma

Let
$$\mathfrak{M}_{\mathrm{T}} = (D, X \times Y_f, H_{\Phi_{\mathrm{Nve}}} \text{ with } f \in \mathrm{Val}_{\mathfrak{M}}^{\mathrm{Adm}} \text{ and } Y_f = \{g \in \mathrm{Val}_{\mathfrak{M}}^{\mathrm{Adm}} \mid f \leq g\}. \text{ Then, } f \leq \theta_{\mathfrak{M}_{\mathrm{T}}}(f, Y_f) \text{ implies that } [\theta_{\mathfrak{M}_{\mathrm{T}}}(f, Y_f)](J) \text{ is a } \Pi_1^1\text{-hard for all } J \in X.$$

Corollary

Let $\mathfrak{M} = (D, J, \{\langle J, J \rangle\}) = \mathcal{N}$. Then there exists no $\Sigma \subseteq \mathcal{L}_T$ such that

$$\theta_{\mathfrak{M}}^{\Phi_{\mathsf{Nve}}}(f, Y_f) = f \; \mathit{iff}(\mathcal{N}, f(J)) \Vdash \Sigma.$$

Outlook

- Modal strong Kleene supervaluation: modality and natural language conditionals
- First-order approaches
 - External and internal axiomatizations
- Generalized quantifiers
- Intuitionistic supervaluation