Krivine Realizability for Classical Set Theory

Richard Matthews

Université Paris-Est Créteil

Bristol Logic Meeting 2023

Joint work with Laura Fontanella and Guillaume Geoffroy

What is it all about?

- ullet General method to produce models of $\operatorname{ZF}\ (+\ \operatorname{DC})$ and even full ZFC .
- Aims to extend the Curry-Howard Correspondence from intuitionistic logic to classical logic.

Curry-Howard Correspondence

Also known as proofs-as-programs or functions-as-types.

A formal description of the relation between computer programs and mathematical proofs.

- Want classical mathematics while being able to extract some computational meaning from proofs.
- Built using a combination of Intuitionistic Realizability and Double Negation Translations.
- (Griffin) Makes use of the relation between Pierce's Law and the program *call-with-current-conditions*.

Examples

Preliminaries

Theorem (Krivine)

It is consistent with ZF + DC that there exists a sequence of sets $A_n \subseteq \mathbb{R}$ for $n \in \omega$ such that

- For n > 1, A_n is uncountable,
- 2 There is an injection $f_{nm}: A_n \to A_m$ iff there is a surjection $g_{nm} : A_m \to A_n \text{ iff } n < m$
- **3** $|A_n \times A_m| = |A_{nm}|$.

Theorem (Krivine)

It is consistent with ZF + DC that there exists $X \subseteq \mathbb{R}$ such that

- **1** X is uncountable and there is no surjection $f: X \to \aleph_1$,
- $|X| = |X \times X|,$
- 3 X has a total order, every proper initial segment of which is countable.
- **1** There is a surjection $g: X \times \omega_1 \to \mathbb{R}$,
- **5** There is an injection $h: X \times \omega_1 \to \mathbb{R}$.

• There is no proof of \perp .

Preliminaries

- p is a proof of $\varphi \wedge \psi$ iff p is a pair $\langle q, r \rangle$ where q proves φ and r proves ψ .
- p is a proof of $\varphi \vee \psi$ iff p is a pair $\langle n, q \rangle$ where n = 0 and q proves φ or n=1 and q proves ψ .
- p proves $\varphi \to \psi$ iff p is a program which transforms any proof of φ into a proof for ψ .
- p proves $\neg \varphi$ iff p proves $\varphi \to \perp$.
- p proves $\exists x \varphi(x)$ iff p is a pair $\langle a, q \rangle$ where q is a proof of $\varphi(a)$.
- p proves $\forall x \varphi(x)$ iff p is a program such that for any set a, p(a) is a proof of $\varphi(a)$.

Kleene Realizability

- Developed by Kleene in 1945,
- Now seen as a realisation of the BHK interpretation,
- Gives a general method to produce intuitionistic models satisfying nice computer-theoretic results which are incompatible with classical logic
 - e.g. Church's thesis: If $\forall n \in \mathbb{N} \exists m \in \mathbb{N} \varphi(x,y)$ then there exists a recursive function f such that $\forall n \in \mathbb{N} \varphi(n,f(n))$.
- Let $\langle \cdot, \cdot \rangle \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a primitive recursive bijection with projections $\mathbf{1^{st}}$ and $\mathbf{2^{nd}}$,
- Let $\{n\}$ be the n^{th} Turing machine (according to some fixed enumeration) and let $\{n\}(m)\downarrow$ be the assertion that the n^{th} Turing machine halts on input m.

Kleene Realizability

Preliminaries

$$\begin{array}{lll} n \Vdash t = s & \text{iff} & t = s, \\ n \Vdash \varphi \wedge \psi & \text{iff} & \mathbf{1^{st}}(n) \Vdash \varphi \text{ and } \mathbf{2^{nd}}(n) \Vdash \psi, \\ n \Vdash \varphi \vee \psi & \text{iff} & \mathbf{1^{st}}(n) = 0 \text{ and } \mathbf{2^{nd}}(n) \Vdash \varphi \text{ or } \\ & \mathbf{1^{st}}(n) \neq 0 \text{ and } \mathbf{2^{nd}}(n) \Vdash \psi, \\ n \Vdash \varphi \rightarrow \psi & \text{iff} & \text{for every } m \in \mathbb{N}, \text{ if } m \Vdash \varphi \text{ then } \\ & \{n\}(m) \downarrow \text{ and } \{n\}(m) \Vdash \psi, \\ n \Vdash \exists x \varphi & \text{iff} & \mathbf{2^{nd}}(n) \Vdash \varphi(\mathbf{1^{st}}(n)), \\ n \Vdash \forall x \varphi(x) & \text{iff} & \text{for all } m \in \mathbb{N}, \{n\}(m) \downarrow \\ & \text{and } \{n\}(m) \Vdash \varphi(m). \end{array}$$

Note

Realizers provide evidence for the "truth" of an assertion.

Realizability Models (McCarty)

- Start with a model of ZFC, work with the realizability structure ω .
- Define a hierarchy $V(Kl)_{\alpha}$ by recursion on the ordinals as

$$V(Kl)_{\alpha} := \bigcup_{\beta \in \alpha} \mathcal{P}(\omega \times V(Kl)_{\beta})$$

and set
$$V(Kl) := \bigcup_{\alpha \in ORD} V(Kl)_{\alpha}$$
.

- Each element, a, of the universe is a collection of pairs $\langle n, b \rangle$ where $n \in \omega$ witnesses that b is in a.
- Define $n \Vdash \varphi$ using (slight modification of) Kleene's realizability. Say that $V(Kl) \Vdash \varphi$ iff $\exists n(n \Vdash \varphi)$.

Theorem (McCarty)

If IZF $\vdash \varphi$ then $V(Kl) \Vdash \varphi$.

Double Negation Translations

- Developed by Kleene in 1952 and extended to set theory by Friedman in 1973
- Method to interpret classical mathematics in intuitionistic mathematics.
- Idea: Given φ and ψ produce two translations φ^* and $\psi^$ such that
 - If IZF $\vdash \varphi$ (respectively ZF $\vdash \varphi$) then IZF \ Ext. $\vdash \varphi^*$ (respectively ZF \ Ext. $\vdash \varphi^*$),
 - If ZF \ Ext. $\vdash \psi$ then IZF \ Ext. $\vdash \psi^-$.
- Conclusion: All four of the above theories are equiconsistent.
- The * translation works by simulating an extensional relation.
- The [−] translation is a ¬¬-translation.

Remark

Preliminaries

For the translation to work, $ZF \setminus Ext$. should be stated with Collection (not Replacement), ∈-Induction (not Foundation) and Weak Power Set (not Power Set).

The Theory ZF_{ε}

Preliminaries

- Aim: Extract a useful theory from the * translation.
- Work in first order predicate logic without equality and only 3 binary relation symbols;
 - ε ("strong membership"),
 - ("extensional membership"),
- Define $a \simeq b$ by $(a \subseteq b) \land (b \subseteq a)$.

Definition (Extensionality Axioms)

$$\forall x \forall y \Big(x \in y \leftrightarrow \exists z \, \varepsilon \, y(x \simeq z) \Big)$$
$$\forall x \forall y \Big(x \subseteq y \leftrightarrow \forall z \, \varepsilon \, x(z \in y) \Big).$$

• Idea: The \in relation is obtained by "collapsing" the ε operation (this is how $a \in {}^{\star} b$ is defined).

The Axioms of $\mathrm{ZF}_{arepsilon}$

Preliminaries

- ε -Induction Scheme. $\forall v \big(\forall x \big(\forall y \, \varepsilon \, x \, \varphi(y,v) \to \varphi(x,v) \big) \to \forall z \varphi(z,v) \big).$
- ε -Separation Scheme. $\forall v \forall a \exists b \forall x (x \varepsilon b \leftrightarrow (x \varepsilon a \land \varphi(x, v))).$
- ε -Pairing. $\forall a \forall b \exists c (a \varepsilon c \land b \varepsilon c)$.
- ε -Unions. $\forall a \exists b \ \forall x \ \varepsilon \ a \ \forall y \ \varepsilon \ x(y \ \varepsilon \ b)$.
- ε -Weak Power Sets. $\forall a \exists b \forall x \exists y \varepsilon b \ \forall z (z \varepsilon y \leftrightarrow (z \varepsilon a \land z \varepsilon x)).$
- ε -Collection Scheme. $\forall w \forall a \exists b \ \forall x \ \varepsilon \ a (\exists y \varphi(x,y,w) \to \exists y \ \varepsilon \ b \ \varphi(x,y,w)).$
- ε -Infinity Axiom. $\forall a \exists b (a \varepsilon b \land \forall x (x \varepsilon b \rightarrow \exists y (y \varepsilon b \land x \varepsilon y)).$

Theorem (Friedman / Krivine)

Let $\varphi(u)$ be a formula in the language $\{\in, \simeq\}$. If $a \simeq b$ then $\operatorname{ZF}_{\varepsilon} \vdash \varphi(a) \to \varphi(b)$.

Suppose that $\mathcal{N}=(N,\varepsilon,\in,\subseteq)$ is a model of $\mathrm{ZF}_{\varepsilon}$. Then $(N,\in,\simeq)\models\mathrm{ZF}$.

λ -Calculus

Preliminaries

Idea: $\lambda x \cdot t \approx t$ is a function on x.

Definition (λ -terms)

The class Λ is recursively defined as follows:

- (variables) $x \in \Lambda$ for any variable x,
- (application) $tu \in \Lambda$ whenever $t, u \in \Lambda$,
- (abstraction) $\lambda x \cdot t \in \Lambda$ whenever x is a variable and $t \in \Lambda$.

Definition (β -reduction)

$$(\lambda x.t)u \to_{\beta} t[x \coloneqq u].$$

Example: (Identity) $(\lambda x \cdot x)t \rightarrow_{\beta} t$.

Pseudo-example: $(\lambda x \cdot x^2 + 1)2 \rightarrow_{\beta} 2^2 + 1$.

Let κ, μ be a pair of cardinals.

Terms $\Lambda_{(\kappa,\mu)}$:

- Any variable is a term,
- (application) ts where t, u are terms,
- (λ -abstraction) $\lambda x.t$ where x is a variable and t a term,
- (call-with-current-condition) cc is a term,
- (continuation-constant) k_{π} where π is a stack,
- Special instructions t_{α} for $\alpha < \kappa$.

Stacks $\Pi_{(\kappa,\mu)}$:

- (push) $t \cdot \pi$ where t is a term and π a stack,
- Stack bottoms ω_{α} for $\alpha < \mu$.

Definition (Process)

A *process* is a pair $t \star \pi$ where $t \in \Lambda_{(\kappa,\mu)}$ and $\pi \in \Pi_{(\kappa,\mu)}$.

Realizers

Preliminaries

Definition (Realizer)

A term t is called a *realizer* if it contains no occurrence of a continuation constant. 1 We denote by $\mathcal R$ the collection of all realizers.

Examples:

- Identity: $\mathbf{I} := \lambda x \cdot x$,
- $0 := \lambda x \cdot \lambda y \cdot y$,
- $1 := \lambda x \cdot \lambda y \cdot xy$.
- $n := \lambda x \cdot \lambda y \cdot x (x \dots (xy))$.
- (Turing fixed point) $\lambda x \cdot \lambda y \cdot (y(xx))(xx)$.

¹i.e. a k_{π} for some $\pi \in \Pi$

Evaluations

Definition (Evaluation)

An *evaluation* is a relation > which satisfies the four rules

Definition (Pole)

A *pole* is a set $\bot\!\!\!\bot\subseteq\Lambda\star\Pi$ such that

$$((s \star \sigma \succ t \star \pi) \land (t \star \pi \in \bot)) \rightarrow s \star \sigma \in \bot.$$

Definition (Realizability Algebra)

A realizability algebra is a tuple $\mathcal{A} = (\Lambda_{(\kappa,\mu)}, \Pi_{(\kappa,\mu)}, \prec, \bot)$.

The Realizability Structures

Recall:

$$V(Kl)_{\alpha} := \bigcup_{\beta \in \alpha} \mathcal{P}(\omega \times V(Kl)_{\beta})$$

Given $\mathcal{A} = (\Lambda, \Pi, \perp, \prec)$, define $\mathcal{N} = (N, \varepsilon, \in, \subseteq)$ by

- \bullet N₀ = \emptyset .
- \bullet $N_{\alpha+1} = \mathcal{P}(N_{\alpha} \times \Pi)$
- $N_{\lambda} = \bigcup_{\alpha \in \lambda} N_{\alpha}$, for λ a limit
- $N = \bigcup_{\alpha \in O_{RD}} N_{\alpha}$.

Idea

 $(a,\pi) \in b$ provides evidence that a is not in b.

Elements of Π provide evidence for the "falsity" of a statement.

Define two sets $\|\varphi\| \subseteq \Pi$ witnessing the "falsity" of φ and $|\varphi| \subseteq \Lambda$ witnessing the "truth" of φ .

Truth and Falsity

Definition $(|\varphi|)$

$$|\varphi| := \{ t \in \Lambda \mid \forall \pi \in ||\varphi|| (t \star \pi \in \perp\!\!\!\perp) \}.$$

Say t realizes φ $(t \Vdash \varphi)$ if $t \in |\varphi|$.

Definition ($\|\varphi\|$)

- $\bullet \|\top\| = \emptyset,$
- $\bullet \ \|\bot\| = \Pi,$
- $||a \notin b|| = {\pi \in \Pi \mid (a, \pi) \in b},$
- $||a \notin b|| = \bigcup_{c \in \text{dom}(b)} \{t \cdot t' \cdot \pi \mid (c, \pi) \in b, t \Vdash a \subseteq c, t' \Vdash c \subseteq a\},$
- $||a \subseteq b|| = \bigcup_{c \in \text{dom}(a)} \{t \cdot \pi \mid (c, \pi) \in a, t \Vdash c \notin b\},\$
- $\bullet \ \|\varphi \to \psi\| = \{t \cdot \pi \mid t \Vdash \varphi, \ \pi \in \|\psi\|\},\$
- $\|\forall x \varphi(x)\| = \bigcup_{a \in \mathbb{N}} \|\varphi[a \setminus x]\|.$

The Model

$$\mathcal{A} = (\Lambda, \Pi, \perp, \prec) \text{ and } \mathcal{N} = (N, \varepsilon, \in, \subseteq).$$

Definition

 $\mathcal{N} \Vdash \varphi$ (φ is true in \mathcal{N}) if there exists a realizer $t \in \mathcal{R}$ such that $t \Vdash \varphi$.

Given a set of formulas Γ , $\mathcal{N} \Vdash \Gamma$ iff for every $\varphi \in \Gamma$, $\mathcal{N} \Vdash \varphi$.

Theorem (Krivine)

- If $\operatorname{ZF}_{\varepsilon} \vdash \varphi$ then $\mathcal{N} = (N, \varepsilon, \in, \subseteq) \Vdash \varphi$.
- $(N, \in, \simeq) \Vdash ZF$.

Pierce's Law

 $|\varphi| := \{t \in \Lambda \mid \forall \pi \in \|\varphi\| \, (t \star \pi \in \mathbb{L})\}$

Proposition

Suppose that $\pi \in \|\varphi\|$. Then for any ψ , $k_{\pi} \Vdash \varphi \to \psi$.

Proof.

- Take $t \cdot \sigma \in \|\varphi \to \psi\|$.
- Then $t \Vdash \varphi$ and $\sigma \in ||\psi||$.
- Then $k_{\pi} \star t \cdot \sigma \succ t \star \pi$.
- But $t \star \pi \in \bot$.
- Thus, $k_{\pi} \star t \cdot \sigma \in \bot$.

Proposition (Pierce's Law)

For any φ and ψ , $\operatorname{cc} \Vdash ((\varphi \to \psi) \to \varphi) \to \varphi$.

Pierce's Law

 $|\varphi| \coloneqq \{t \in \Lambda \mid \forall \pi \in \|\varphi\| \, (t \star \pi \in \mathbb{\bot})\}$

Proposition

Suppose that $\pi \in \|\varphi\|$. Then for any ψ , $k_{\pi} \Vdash \varphi \to \psi$.

Proposition (Pierce's Law)

For any φ and ψ , $\operatorname{cc} \Vdash ((\varphi \to \psi) \to \varphi) \to \varphi$.

Proof.

- Suppose that $t \Vdash (\varphi \to \psi) \to \varphi$ and $\pi \in ||\varphi||$.
- By above, $k_{\pi} \Vdash \varphi \rightarrow \psi$.
- So $cc \star t \cdot \pi \succ t \star k_{\pi} \cdot \pi \in \bot$.

Observation

Pierce's law is equivalent to Excluded Middle, so $\mathcal N$ will satisfy classical logic.

Realizability versus Forcing

- Suppose that $\mathbb{B}=(\mathbb{B},\mathbf{1},\mathbf{0},\wedge,\vee,\neg)$ is a complete Boolean algebra.
- Define a realizability algebra $\mathcal{A}_{\mathbb{B}}=(\kappa,\mu,\prec,\perp\!\!\!\perp)$ as follows:
 - $\kappa = 0$, $\mu = |\mathbb{B}|$.
 - $(\omega_p \mid p \in \mathbb{B})$ is a set of stack bottoms,
 - Define a function $\tau \colon \Lambda_{(0,\mu)} \cup \Pi_{(0,\mu)} \to \mathbb{B}$ in the "obvious" way,
 - Say $t \star \pi \succ s \star \sigma$ iff $\tau(t) \land \tau(\pi) \leq \tau(s) \land \tau(\sigma)$,
 - Set $\bot = \{t \star \pi \mid \tau(t) \land \tau(\pi) = 0\}.$

Theorem (M. / essentially Krivine)

For any sentence φ ,

$$\mathcal{N} \Vdash_{\mathcal{A}} \varphi$$
 iff $\lambda x \cdot x \Vdash_{\mathcal{A}} \varphi$ iff φ is valid in $V^{\mathbb{B}}$.

Conclusion

Every Boolean-valued model can be viewed as a realizability model.

Daleth names

Preliminaries

Aim: Find a way to interpret every ground model set in the realizability model. In forcing, have $\check{a} \coloneqq \{(1, \check{b}) \mid b \in a\}.$

Definition

Given $a \in V$, $\exists (a) := \{(\exists (x), \pi) \mid x \in a, \pi \in \Pi\}.$

Proposition

- If $a \subseteq b$ then $\mathcal{N} \Vdash \exists (a) \subseteq \exists (b)$,
- If $a \in b$ then $\lambda x \cdot x \Vdash \exists (a) \in \exists (b)$.

Warning

 $\exists (a)$ can contain lots more elements than just $\{\exists (b) \mid b \in a\}$.

Example

 $\mathbb{k}(2)$ is a Boolean algebra of subsets of 1 in the \mathbb{K}_{ε} model, which consistently has size greater than 2!

Ordinals

Definition (Over $\mathrm{ZF}_{\varepsilon}$)

A set a is a ε -ordinal if it is a ε -transitive set of ε -transitive sets, i.e.

$$\forall x \,\varepsilon\, a \,\forall y \,\varepsilon\, x \,(y \,\varepsilon\, a) \quad \wedge \quad \forall z \,\varepsilon\, a \,\forall x \,\varepsilon\, z \,\forall y \,\varepsilon\, x \,(y \,\varepsilon\, z).$$

Proposition

- If $(N, \varepsilon, \in, \subseteq) \models a$ is a ε -ordinal, then $(N, \in, \simeq) \models a$ is an ordinal.
- If δ is an ordinal in V then $\mathcal{N} \Vdash \text{``} \exists (\delta)$ is a ε -ordinal''.

Theorem (Fontanella, M.)

For every $n \in \omega$, $\mathcal{N} \Vdash \exists (n)$ is the n^{th} natural number.

What about ω ?

Preliminaries

Definition

For $n \in \omega$, let $\hat{n} := \{(\hat{m}, \underline{m} \cdot \pi) \mid \pi \in \Pi, m \in n\}.^2$

Theorem (Fontanella, M.)

For every $n \in \omega$, $\mathcal{N} \Vdash \neg (n) \simeq \hat{n}$.

Theorem (Krivine / Fontanella, Geoffroy)

Let $\hat{\omega} = \{(\hat{n}, \underline{n} \cdot \pi) \mid \pi \in \Pi, n \in \omega\}$. Then $\mathcal{N} \Vdash \hat{\omega}$ is the first infinite ordinal.

Question

We can prove $\mathcal{N} \Vdash \hat{\omega} \subseteq \mathbb{k}(\omega)$. Does $\mathcal{N} \Vdash \hat{\omega} \simeq \mathbb{k}(\omega)$?

 $^{^{2}}$ Where n is some fixed, recursively defined sequence of realizers

Preserving Cardinals

Preliminaries

Proposition (Over ZF_{ε})

If $(N, \varepsilon, \in, \subseteq) \models a$ is a ε -cardinal ³ then $(N, \in, \simeq) \models a$ is a cardinal.

Theorem (Fontanella, M.)

Let $\delta > |\Lambda|$ be a regular cardinal. Then

$$\mathcal{N} \Vdash \forall f \, \forall a \, \varepsilon \, \, \mathsf{T}(\delta) \, \exists b \, \varepsilon \, \, \mathsf{T}(\delta) (\mathrm{Fun}(f) \to \forall y \, \varepsilon \, a(\langle y, b \rangle \, \varepsilon \, f \to \perp)).$$

Ordinals

i.e. for all $a \in \mathbb{k}(\delta)$ any $f: a \to \mathbb{k}(\delta)$ is not a ε -surjection.

Corollary

For every $\delta > |\Lambda|$, $\Im(\delta)$ is a ε -cardinal in $\mathcal N$ and hence a cardinal in (N, \in, \simeq) .

³i.e. for every $b \, \varepsilon \, a$ there is no ε -function which is an ε -surjection $(\forall y \in a \exists x \in b \langle x, y \rangle \in f)$ of b onto a.

Chain Conditions

Definition (δ -chain condition)

A realizability algebra satisfies the δ -chain condition if there exists a realizer $\mathbf{p} \in \mathcal{R}$ such that for every $A \subseteq \Lambda$ of cardinality at least δ , for every $t \in \Lambda$ and $\pi \in \Pi$:

> if for every $a \neq b$ in A $(t \star a \cdot b \cdot \pi \in \bot)$, then there exists an $a \in A$ such that $\mathbf{p} \star t \cdot a \cdot \pi \in \bot$.

Theorem (Fontanella, M.)

Suppose that a realizability algebra satisfies the δ -chain condition for some regular cardinal δ , as witnessed by the term **p**. Then there exists a realizer v such that.

 $v \Vdash \forall a \in \exists (\delta)$ ("there is no surjection of a onto $\exists (\delta)$ ").

Chain Conditions are Chain Conditions

Definition (δ -chain condition)

A realizability algebra satisfies the δ -chain condition if there exists a realizer $\mathbf{p} \in \mathcal{R}$ such that for every $A \subseteq \Lambda$ of cardinality at least δ , for every $t \in \Lambda$ and $\pi \in \Pi$:

if for every $a \neq b$ in A $(t \star a \cdot b \cdot \pi \in \bot)$, then there exists an $a \in A$ such that $\mathbf{p} \star t \cdot a \cdot \pi \in \bot$.

Theorem (Fontanella, M.)

Let $\mathbb B$ be a complete Boolean algebra and δ a regular cardinal. $\mathbb B$ satisfies the δ -cc if and only if $\mathcal A_{\mathbb B}$ satisfies the δ -cc.

Large Cardinals vs Large Sets

Preliminaries

- In ZFC, large cardinals are ordinals which satisfy some nice properties.
- But in $\mathrm{ZF}_{\varepsilon}$ (or IZF), ε -ordinals are not well-behaved.⁴
- Instead easier to preserve *structural* properties derivable from large cardinals.

Theorem (ZFC)

 κ is inaccessible if and only if V_{κ} is a model of $\mathbb{Z}F_2$ (full second-order ZF).

⁴e.g. $\Im(2)$ and $\widehat{4}$ can be two distinct ordinals of size 4!

Inaccessibility

Definition (ZF_{ε})

We call a set z inaccessible if it satisfies: ε -Empty Set, ε -Pairing, ε -Unions, ε -Infinity, ε -Weak Power Set and ε -Second-order Collection. 5

Theorem (Fontanella, Geoffroy, M.)

Suppose that $\mathcal{N}=(N,\varepsilon,\in,\subseteq)$ satisfies $\mathrm{ZF}_{\varepsilon}$ plus z is an inaccessible set. Then (N, \in, \simeq) is a model of ZF plus $z = V_{\delta}$ where δ is an inaccessible cardinal.

Theorem (Fontanella, Geoffroy, M.)

If κ is an inaccessible cardinal in V and $A \in V_{\kappa}$, then $\mathcal{N} \Vdash N_{\kappa}$ is an inaccessible set where $N_{\alpha} = \bigcup_{\beta \in \alpha} \mathcal{P}(N_{\beta} \times \Pi)$.

 $^{{}^{5}\}forall u\,\varepsilon\,z\forall f(\forall x\,\varepsilon\,u\,\exists y\,\varepsilon\,z\,(\langle x,y\rangle\,\varepsilon\,f)\rightarrow\exists v\,\varepsilon\,z\,\forall x\,\varepsilon\,u\,\exists y\,\varepsilon\,v\,(\langle x,y\rangle\,\varepsilon\,f))$

Measurability

Preliminaries

- Work over ZFC and suppose κ is measurable and the critical point of the elementary embedding $j: V \to M$.
- Suppose $A \in V_{\kappa}$.
- Define $j^* := \{(\langle x, j(x) \rangle, \pi) \mid x \in \mathbb{N}, \pi \in \Pi\}.$

Theorem (Fontanella, Geoffroy, M.)

In $\mathcal{N} = (N, \varepsilon, \in, \subset, j^*)$.

- j^* is a ε -function,
- $\exists (\kappa) \in j^*(\exists (\kappa)) \text{ and } \forall x \in \exists (\kappa)(j^*(x) \simeq x),$
- j^* is an elementary embedding (for formulas in the language $\{\varepsilon, \in, \subset\}$),
- $(N, \in, \simeq) \models ZF + there exists a V-critical cardinal.^6$

 $^{^6\}delta$ is a V-critical cardinal if it is the critical point of some elementary embedding $j : V \to M$.

The Model

Reinhardt

- Suppose (V, C) is a model of GB and κ is Reinhardt (the critical point of an elementary embedding $j: V \to V$).
- Suppose $A \in V_{\kappa}$.
- Then we can define a second-order version of the realizability structure $\mathcal{N}=(N,\mathcal{D},\varepsilon,\in,\subseteq)$.

Theorem (Fontanella, Geoffroy, M.)

- $(N, \mathcal{D}, \varepsilon, \in, \subseteq) \models GB_{\varepsilon}$,
- $(N, \mathcal{D}, \varepsilon, \in, \subseteq) \models j^* \colon N \to N$ is an elementary embedding,
- $(N, \mathcal{D}, \in, \simeq) \models GB + there \ exists \ a \ Reinhardt \ cardinal.$

Open Questions

- **1** Does $\mathcal{N} \Vdash \hat{\omega} \simeq \mathbb{k}(\omega)$?
- Open Example 2 Does every realizability model satisfy SVC?
- Is there a connection between realizability models and symmetric submodels?
 ⁸
- Can we generalise other forcing notions to realizability (e.g. closure)?
- Is the ground model definable in the realizability model?
- In Krivine's model for the Axiom of Choice, we know there is a realizer for Choice but what is it?
- O Can we realize the Axiom of Constructibility?
- In the realizability model for measurable cardinals, is j^* definable in \mathcal{N} ?

 $^{^{7}}$ i.e. we can force Choice over the model. This would mean it is equivalent to a symmetric submodel of some model of ${\rm ZFC}.$

⁸Conjectured to be yes by Asaf Karagila

⁹Partial positive answers by Krivine

au Interpretation

Define $\tau \colon \Lambda_{(0,\mu)} \cup \Pi_{(0,\mu)} \to \mathbb{B}$ by:

- for every stack bottom ω_p , we let $\tau(\omega_p) := p$;
- for every variable x, $\tau(x) := \tau(cc) := 1$;
- for every term t and stack π , we let $\tau(t \cdot \pi) = \tau(t) \wedge \tau(\pi)$;
- for all λ_c -terms t, u, we let $\tau(tu) := \tau(t) \wedge \tau(u)$;
- for every variable x and every term t, we let $\tau(\lambda x \cdot t) := \tau(t)$;
- for every stack π , we let $\tau(k_{\pi}) := \tau(\pi)$.

Observations

- If t is a realizer then $\tau(t) = \mathbf{1}$
- If $\tau(t) = \tau(s)$ then $t \Vdash_{\mathcal{A}} \varphi \Leftrightarrow s \Vdash_{\mathcal{A}} \varphi$.

\mathbb{B} satisfies δ -cc implies $\mathcal{A}_{\mathbb{B}}$ satisfies δ -cc

Proof.

- Fix $A\subseteq \Lambda$, $|A|\geq \delta$, $t\in \Lambda$, $\pi\in \Pi$. Suppose for $a\neq b$, $t\star a\cdot b\cdot \pi\in \bot$.
- Then $0 = \tau(t) \wedge \tau(a) \wedge \tau(b) \wedge \tau(\pi)$.
- If $\tau(t) \wedge \tau(\pi) = 0$ then $\lambda f \cdot f \star t \cdot a \cdot \pi \in \bot$ for all $a \in A$.
- Suppose $\tau(t) \wedge \tau(\pi) > 0$. If $\exists a \in A$, $\tau(a) \wedge \tau(t) \wedge \tau(\pi) = 0$ then $\lambda f \cdot f \star t \cdot a \cdot \pi \in \bot$.
- Otherwise, must have $\tau(a) \wedge \tau(b) = 0$ for all $a \neq b$.
- So $\{\tau(a) \mid a \in A\}$ is an antichain of size $\geq \delta$.
- Contradicting δ -cc in \mathbb{B} .

Proof.

- Fix $A \subseteq \mathbb{B}$ to be an antichain of cardinality $\geq \delta$.
- For $p \in \mathbb{B}$, let ω_p be the stack bottom corresponding to p.
- WLOG, assume $\mathbf{0} \notin A$.
- For $a \neq b$, $\mathbf{1} \wedge a \wedge b = 0$
- So, for $a \neq b$, $\tau(\lambda f \cdot f) \wedge \tau(\omega_a) \wedge \tau(\omega_b) \wedge \tau(\omega_1) = 0$.
- Thus $\lambda f \cdot f \star \omega_a \cdot \omega_b \cdot \omega_1 \in \bot$.
- So, since $|A| \geq \delta$, fix $a \in A$ such that $\mathbf{p} \star \lambda f \cdot f \cdot \omega_a \cdot \omega_1 \in \mathbb{L}$.
- Then $0 = \tau(p) \wedge \tau(\lambda f \cdot f) \wedge \tau(\omega_a) \wedge \tau(\omega_1) = a$, contradiction.

