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What is it all about?

@ General method to produce models of ZF (4 DC) and even
full ZFC.

@ Aims to extend the Curry-Howard Correspondence from
intuitionistic logic to classical logic.

Curry-Howard Correspondence

Also known as proofs-as-programs or functions-as-types.
A formal description of the relation between computer programs
and mathematical proofs.

@ Want classical mathematics while being able to extract some
computational meaning from proofs.

@ Built using a combination of Intuitionistic Realizability and
Double Negation Translations.

o (Griffin) Makes use of the relation between Pierce's Law and
the program call-with-current-conditions.
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Examples

Theorem (Krivine)
It is consistent with ZF + DC that there exists a sequence of sets
A, CR forn € w such that
@ Forn > 1, A, is uncountable,
@ There is an injection fnp,: A, — Ay, iff there is a surjection
Inm: Am — Ay iffn <m,
Q A, X Al = |Anml-

€

Theorem (Krivine)

It is consistent with ZF + DC that there exists X C R such that
@ X is uncountable and there is no surjection f: X — Ny,
Q | X|=|XxX
@ X has a total order, every proper initial segment of which is
countable,
@ There is a surjection g: X X w; — R,
@ There is an injection h: X x w; — R.

7
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Brouwer-Heyting-Kolmogorov Interpretation

There is no proof of L.
p is a proof of p A4 iff p is a pair (g, ) where ¢ proves ¢ and
7 proves 1.

@ pis a proof of v V¢ iff p is a pair (n,q) where n =0 and ¢
proves ¢ or n =1 and ¢ proves 1.

p proves  — 1 iff p is a program which transforms any proof
of ¢ into a proof for .

p proves - iff p proves ¢ — 1.

p proves Jxp(x) iff p is a pair (a,q) where ¢ is a proof of
o(a).

p proves Yap(z) iff p is a program such that for any set a,
p(a) is a proof of p(a).
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Kleene Realizability

@ Developed by Kleene in 1945,
@ Now seen as a realisation of the BHK interpretation,

@ Gives a general method to produce intuitionistic models
satisfying nice computer-theoretic results which are
incompatible with classical logic

o e.g. Church’s thesis: If Vn € N3m € Np(z,y) then there
exists a recursive function f such that Vn € Np(n, f(n)).
o Let (-,-): Nx N — N be a primitive recursive bijection with
projections 15t and 209,
o Let {n} be the ntM Turing machine (according to some fixed
enumeration) and let {n}(m) | be the assertion that the n'"
Turing machine halts on input m.
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Kleene Realizability

nlkFt=s iff
nlkeAy iff
nlkeVvay iff
nlkeo— Y iff
n Ik Jdze iff
n Ik Vrp(z) iff

t = s,

15¢(n) IF ¢ and 2794(n) I 4,
15¢(n) = 0 and 274(n) IF ¢ or
15¢(n) # 0 and 2™4(n) IF ¥,
for every m € N, if m IF ¢ then
{n}(m) | and {n}(m) I,
27(n) IF p(1%(n)),

for all m € N, {n}(m)|

and {n}(m) IF o(m).

Realizers provide evidence for the “truth” of an assertion.
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Realizability Models (McCarty)

@ Start with a model of ZFC, work with the realizability
structure w.

e Define a hierarchy V(KI), by recursion on the ordinals as
V(Kl)o = | Plw x V(KI)p)
BEQ

and set V(K1) := Uycorp V(E1)a.

e Each element, a, of the universe is a collection of pairs (n,b)
where n € w witnesses that b is in a.

@ Define n IF ¢ using (slight modification of) Kleene's
realizability. Say that V(K1) IF ¢ iff In(n I ¢).

Theorem (McCarty)
If1ZF F ¢ then V(KI) IF .
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Double Negation Translations

@ Developed by Kleene in 1952 and extended to set theory by
Friedman in 1973.
@ Method to interpret classical mathematics in intuitionistic
mathematics.
@ Idea: Given ¢ and 1 produce two translations ¢* and ¢~
such that
o If IZF I ¢ (respectively ZF F ¢) then IZF \ Ext. - ¢*
(respectively ZF \ Ext. - ¢*),
o If ZF \ Ext. b ¢ then IZF \ Ext. .
@ Conclusion: All four of the above theories are equiconsistent.
@ The * translation works by simulating an extensional relation.
@ The ~ translation is a =—-translation.

For the translation to work, ZF \ Ext. should be stated with
Collection (not Replacement), €-Induction (not Foundation) and
Weak Power Set (not Power Set).
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The Theory ZF.

@ Aim: Extract a useful theory from the * translation.
@ Work in first order predicate logic without equality and only 3
binary relation symbols;

e ¢ (“strong membership”),
o € (“extensional membership"),
o C (“extensional subset").

@ Definea~bby (a Cb)A(bCa).

Definition (Extensionality Axioms)

VxVy(x €y« Jzey(xr ~ z))

V:UVy(:B CyeVzex(z € y))

o Idea: The € relation is obtained by “collapsing” the €
operation (this is how a €* b is defined).
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The Axioms of ZF.

@ c-Induction Scheme. Vo (Va (Vyez o(y,v) — ¢(z,v)) — Vzp(z,0)).
@ c-Separation Scheme. VoVa3bVz(zeb + (xea A p(z,v))).

@ c-Pairing. VaVb3c(aec Abec).

@ c-Unions. Ya3bVzeaVyex(yeb).

@ c-Weak Power Sets. Va3bVax JyebVz(zey <> (zea A zex)).

@ e-Collection Scheme.
VwVa3bVz e a(Jyp(z,y,w) — Jyebo(z,y, w)).

@ c-Infinity Axiom. Va3b (acbAVz(zeb — Jy(yebAzey)).

Theorem (Friedman / Krivine)

Let o(u) be a formula in the language {€,~}. If a ~ b then
ZF. F o(a) — ¢(b).

Suppose that N = (N, ¢, €,C) is a model of ZF.. Then
(N,g,~) = ZF.
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M-Calculus

Idea: A\z.t =~ tis a function on z.

Definition (A-terms)

The class A is recursively defined as follows:
@ (variables) x € A for any variable z,
o (application) tu € A whenever t,u € A,
o (abstraction) Az.t € A whenever z is a variable and t € A.

Definition (S-reduction)

(Az.t)u —g t[z = u).

Example: (Identity) (Az.z)t —4 t.
Pseudo-example: (A\z.z? +1)2 —5 22 + 1.
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Realizability Algebras

Let , ;1 be a pair of cardinals.
Terms A, )

Any variable is a term,

(application) ts where t,u are terms,
(\-abstraction) Az.t where x is a variable and t a term,

°
°

o (call-with-current-condition) cc is a term,

e (continuation-constant) k. where 7 is a stack,
°

Special instructions t,, for a < k.

Stacks Il )
@ (push) t-m where ¢ is a term and 7 a stack,
@ Stack bottoms w, for a < p.

Definition (Process)

A process is a pair t x ™ where t € A,y and m € II,; ).
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Realizers

Definition (Realizer)

A term t is called a realizer if it contains no occurrence of a
continuation constant.! We denote by R the collection of all
realizers.

Examples:
o Identity: | := Az.zx,
o 0:= Az.\y.y,
e 1:= \z.\y.xy,
o n =z \y.x(z...(zy)),
o (Turing fixed point) Az.Ay.(y(zx)) (zz).

li.e. a ky for some 7 € II
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Evaluations

Definition (Evaluation)
An evaluation is a relation > which satisfies the four rules

tsxm = txs-m (push),

AMfidxs-m = tf =s]xm (grab),

ccxt-m = txkpew (save),
kext-oc > txmw (restore).

.

Definition (Pole)
A pole is a set 1L C A % II such that

((sxo=txm) N (txmel)) — sxoe L.

A

Definition (Realizability Algebra)

A realizability algebra is a tuple A = (A, ), M 0y, <, ).
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The Realizability Structures

Recall:
V(K)o = | Plwx V(Kl)p)
Bea
Given A = (A, 1L, 1L, <), define N = (N, ¢,¢€,C) by
L N(] = (D,

@ Not1 = P(Ny x 1I),
@ Ny = Usex Na, for A a limit
o N= UaEORD Na.

(a,m) € b provides evidence that a is not in b.
Elements of II provide evidence for the “falsity” of a statement.

Define two sets |||l C II witnessing the “falsity” of ¢ and |p| C A
witnessing the “truth” of ¢.
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Truth and Falsity

Definition (|¢])

lp| ={t e A|Vm € |p| (Exme 1)}
Say t realizes ¢ (t IF @) if t € |p].

.

Definition (]|¢]|)
° || =0,
o ||L|| =1L,
o |afbl|={rell|(a,7) € b},
o lla &bl = Uccaom@p it -t -7 [(c,m) €b,tI-a Ce,t'IFcCal,
® [la € bll = Ucedom@{t - 7 [(¢,7) € a, tIF c &b},
o o= yll={t-m[tlky, mel|}
o |[Vop(z)| = Uaenllela\ 2]l
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The Model

A= (ATI, 1L, <) and N = (N,¢, €,Q).

Definition

N IF ¢ (¢ is true in N) if there exists a realizer ¢ € R such that
t I .
Given a set of formulas T', A |- T iff for every ¢ € T', N |- .

Theorem (Krivine)

@ IfZF.F ¢ then N = (N,e,€,Q) I .
o (N,g,~) IFZF.
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Pierce's Law lpl:={t €A |Vr € |p||l(txme L)}

Proposition

Suppose that 7w € ||p||. Then for any ¥, k. IF ¢ — 1.

Take t- 0 € || — ]
Then t I- ¢ and o € ||9]|.
Then ky xt-o = t*m.
But t xm € L.

Thus, ky xt-0 € A.

.

Proposition (Pierce’s Law)

For any ¢ and 1, cc Ik ((p = ¥) = ) — .
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Pierce's Law lpl:={t €A |Vr € |p||l(txme L)}

Proposition

Suppose that 7w € ||¢||. Then for any ¥, k. IF ¢ — 1.

Proposition (Pierce’'s Law)

For any ¢ and 9, cclF ((p = ¥) = ) — .

@ Suppose that ¢t IF (¢ = ¥) = ¢ and 7 € |||
@ By above, k; IF ¢ — 1.
@ Soccxt-m=txky-me I. O

A

Observation

Pierce's law is equivalent to Excluded Middle, so N will satisfy
classical logic.

A
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Realizability versus Forcing

@ Suppose that B = (B,1,0,A,V,—) is a complete Boolean

algebra.
@ Define a realizability algebra Ap = (k, i, <, 1) as follows:
o k=0 pu= ‘[B|
o (wp | p€B)is a set of stack bottoms,
o Define a function 7: A(g ) Ull(g ) — B in the “obvious” way,
o Say txm = s*xo iff 7(t) A7(m) < 7(s) A7(0),
o Set I ={txm|7(t) A7(r)=0}.

Theorem (M. / essentially Krivine)

For any sentence o,
Nikqap iff Mzxlkq@ iff ¢ isvalid in VE.

Every Boolean-valued model can be viewed as a realizability model.
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Daleth names

Aim: Find a way to interpret every ground model set in the
realizability model. In forcing, have a := {(1,b) | b € a}.

Definition
Given a € V, T(a) = {((z),n) | x € a,7 € II}.

Proposition
o Ifa Cbthen N IFT(a) C TI(b),
e Ifa € b then Ax.x I T(a) e T1(b).

T(a) can contain lots more elements than just {7(b) | b € a}.

71(2) is a Boolean algebra of subsets of 1 in the ZF. model, which
consistently has size greater than 2!
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Ordinals

Definition (Over ZF,)

A set a is a e-ordinal if it is a e-transitive set of e-transitive sets,
i.e.

VeeaVyex(yea) AN VzeaVrxezVyex(yez).

A

Proposition
e If(N,e,6,Q) =a is a €-ordinal, then
(N,€,~) = ais an ordinal.
@ Ifd is an ordinal in V then NI “71(0) is a € -ordinal”.

.

Theorem (Fontanella, M.)

For every n € w, N IF T\(n) is the n" natural number.
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What about w?

Definition

For n € w, let & == {(,m-m) | 7 € II,m € n}.2

Theorem (Fontanella, M.)
For every n € w, NIk T(n) ~ q.

Theorem (Krivine / Fontanella, Geoffroy)

Let o ={(A,n-m) | mell,n € w}. Then
N |- & is the first infinite ordinal.

We can prove N |k & C T(w). Does N IF & ~ T(w)?

2Where n is some fixed, recursively defined sequence of realizers
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Preserving Cardinals

Proposition (Over ZF;)

If (N,e,€,C) = a is a -cardinal 3 then
(N, €,~) = a is a cardinal.

Theorem (Fontanella, M.)
Let 6 > |A| be a regular cardinal. Then

NIV fVaeT(6)Ibe () (Fun(f) — Vyea((y,b)e f —1)).

i.e. for all ac™1(d) any f: a — 71(6) is not a e-surjection.

\,

For every § > |A|, T1(8) is a e-cardinal in N' and hence a cardinal
in (N, €,~).

.

3j.e. for every be a there is no e-function which is an e-surjection

(Vyeadzeb(z,y)e f) of b onto a.
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Chain Conditions

Definition (d-chain condition)

A realizability algebra satisfies the d-chain condition if there exists
a realizer p € R such that for every A C A of cardinality at least J,
for every t € A and 7 € 1I:
if forevery a #bin A (txa-b-m € 1), then
there exists an @ € A such that pxt-a-7 € 1.

Theorem (Fontanella, M.)

Suppose that a realizability algebra satisfies the 5-chain condition
for some regular cardinal §, as witnessed by the term p. Then
there exists a realizer v such that,

v Ik YaeT1(0)(“there is no surjection of a onto 71(5)”).
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Chain Conditions are Chain Conditions

Definition (d-chain condition)
A realizability algebra satisfies the §-chain condition if there exists
a realizer p € R such that for every A C A of cardinality at least 9,
for every t € A and 7 € II:
if for every a 2bin A (t*a-b-m € 1), then
there exists an a € A such that pxt-a-7 € 1.

Theorem (Fontanella, M.)

Let B be a complete Boolean algebra and § a regular cardinal. B
satisfies the d-cc if and only if Ag satisfies the d-cc.
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Large Cardinals vs Large Sets

o In ZFC, large cardinals are ordinals which satisfy some nice
properties.

e But in ZF. (or IZF), e-ordinals are not well-behaved.*

@ Instead easier to preserve structural properties derivable from
large cardinals.

Theorem (ZFC)

Kk is inaccessible if and only if V; is a model of ZFy (full
second-order ZF).

*e.g. T(2) and 4 can be two distinct ordinals of size 4!
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Inaccessibility

Definition (ZF;)

We call a set z inaccessible if it satisfies: e-Empty Set, e-Pairing,
e-Unions, e-Infinity, e-Weak Power Set and e-Second-order
Collection. °

A

Theorem (Fontanella, Geoffroy, M.)

Suppose that N = (N, e, €, C) satisfies ZF . plus z is an
inaccessible set. Then (N, €,~) is a model of ZF plus z = Vs
where ¢ is an inaccessible cardinal.

.

Theorem (Fontanella, Geoffroy, M.)

If k is an inaccessible cardinal in V and A € V,., then
N IF N, is an inaccessible set
where No = Ugeo P(Ng x II).

€

YueVf(VeeuIyez ((x,y)e f) = vezVreuIyev ((z,y)e f))
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Measurability

@ Work over ZFC and suppose « is measurable and the critical
point of the elementary embedding j: V — M.

@ Suppose A € V.
e Define j* = {((z,j(z)),7) | z € N, 7 € II}.

Theorem (Fontanella, Geoffroy, M.)
InN = (N,e, €,C,j%),
@ j* is a e-function,
e (k) ej*(Tk)) and Vz e (k) (j*(z) = x),
@ j* is an elementary embedding (for formulas in the language
{e,€,C}),

o (N,€,~) |= ZF + there exists a V-critical cardinal.®

65 is a V-critical cardinal if it is the critical point of some elementary
embedding j: V — M.
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Reinhardt

@ Suppose (V,C) is a model of GB and « is Reinhardt (the
critical point of an elementary embedding j: V — V).

@ Suppose A € V.

@ Then we can define a second-order version of the realizability
structure N’ = (N, D, ¢, €, Q).

Theorem (Fontanella, Geoffroy, M.)

o (N,D,c,€,C) =GB,
@ (N,D,e,e,C) = j*: N — N is an elementary embedding,
e (N,D,€,~) = GB + there exists a Reinhardt cardinal.
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Open Questions

Does NV IF & ~ T(w)?

Does every realizability model satisfy SVC? 7

Is there a connection between realizability models and
symmetric submodels? 8

Can we generalise other forcing notions to realizability (e.g.
closure)?

Is the ground model definable in the realizability model? °
In Krivine's model for the Axiom of Choice, we know there is
a realizer for Choice but what is it?

Can we realize the Axiom of Constructibility?

In the realizability model for measurable cardinals, is j*
definable in N'?

©0 00 © 000

"i.e. we can force Choice over the model. This would mean it is equivalent
to a symmetric submodel of some model of ZFC.

8Conjectured to be yes by Asaf Karagila

%Partial positive answers by Krivine
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T Interpretation

Define 7: A(Ovﬂ) U H(Ovu/) — B byZ

o for every stack bottom w,, we let 7(wp) == p;
for every variable z, 7(z) := 7(cc) = 1;

for every term ¢ and stack 7, we let 7(t - ) = 7(t) A 7(m);

°
°

o for all A\.-terms t,u, we let 7(tu) :== 7(t) A 7(u);

e for every variable x and every term ¢, we let 7(Az - t) == 7(t);
°

for every stack m, we let 7(k;) == 7(m).

Observations

o If ¢ is a realizer then 7(¢) =1
o If 7(t) =7(s) thentlFq p < slF4 .
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B satisfies d-cc implies Ag satisfies d-cc

@ Fix ACA, |A| >4, t€ A, m €1l Suppose for a # b,
txa-b-me l.

Then 0 = 7(t) A 7(a) AT(b) AT(m).

If 7(t) A7(w) =0 then \f.fxt-a-7 € 1 for all a € A.
Suppose 7(t) A7T(mw) > 0. If Ja € A, T7(a) AT(t) A7T(7) =0
then Af.fxt-a-m€ A.

Otherwise, must have 7(a) A 7(b) = 0 for all a # b.

So {7(a) | a € A} is an antichain of size > .

Contradicting d-cc in B.
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Ap satisfies d-cc implies B satisfies d-cc

Fix A C B to be an antichain of cardinality > 4.

For p € B, let w, be the stack bottom corresponding to p.

WLOG, assume 0 ¢ A.

Fora#b 1Aanb=0

So, for a # b, T(Af.f) A 7T(wa) A T(wp) A T(w1) = 0.

Thus Af.fxwq - wp-wy € L.

So, since |A| >0, fix a € A such that px Af.f - w, - wy € L.

Then 0 = 7(p) AT(Af.f) A T(wa) A T(w1) = a, contradiction.
L]
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