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Preliminaries The Model Ordinals Large Cardinals

What is it all about?

General method to produce models of ZF (+ DC) and even
full ZFC.
Aims to extend the Curry-Howard Correspondence from
intuitionistic logic to classical logic.

Curry-Howard Correspondence
Also known as proofs-as-programs or functions-as-types.
A formal description of the relation between computer programs
and mathematical proofs.

Want classical mathematics while being able to extract some
computational meaning from proofs.
Built using a combination of Intuitionistic Realizability and
Double Negation Translations.
(Griffin) Makes use of the relation between Pierce’s Law and
the program call-with-current-conditions.
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Examples

Theorem (Krivine)
It is consistent with ZF + DC that there exists a sequence of sets
An ⊆ R for n ∈ ω such that

1 For n > 1, An is uncountable,
2 There is an injection fnm : An → Am iff there is a surjection
gnm : Am → An iff n < m,

3 |An ×Am| = |Anm|.

Theorem (Krivine)
It is consistent with ZF + DC that there exists X ⊆ R such that

1 X is uncountable and there is no surjection f : X → ℵ1,
2 |X| = |X ×X|,
3 X has a total order, every proper initial segment of which is

countable,
4 There is a surjection g : X × ω1 → R,
5 There is an injection h : X × ω1 → R.
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Brouwer-Heyting-Kolmogorov Interpretation

There is no proof of ⊥.
p is a proof of φ ∧ ψ iff p is a pair ⟨q, r⟩ where q proves φ and
r proves ψ.
p is a proof of φ ∨ ψ iff p is a pair ⟨n, q⟩ where n = 0 and q
proves φ or n = 1 and q proves ψ.
p proves φ → ψ iff p is a program which transforms any proof
of φ into a proof for ψ.
p proves ¬φ iff p proves φ →⊥.
p proves ∃xφ(x) iff p is a pair ⟨a, q⟩ where q is a proof of
φ(a).
p proves ∀xφ(x) iff p is a program such that for any set a,
p(a) is a proof of φ(a).
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Kleene Realizability

Developed by Kleene in 1945,
Now seen as a realisation of the BHK interpretation,
Gives a general method to produce intuitionistic models
satisfying nice computer-theoretic results which are
incompatible with classical logic

e.g. Church’s thesis: If ∀n ∈ N∃m ∈ Nφ(x, y) then there
exists a recursive function f such that ∀n ∈ Nφ(n, f(n)).

Let ⟨·, ·⟩ : N × N → N be a primitive recursive bijection with
projections 1st and 2nd,
Let {n} be the nth Turing machine (according to some fixed
enumeration) and let {n}(m) ↓ be the assertion that the nth

Turing machine halts on input m.
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Kleene Realizability

n ⊩ t = s iff t = s,

n ⊩ φ ∧ ψ iff 1st(n) ⊩ φ and 2nd(n) ⊩ ψ,

n ⊩ φ ∨ ψ iff 1st(n) = 0 and 2nd(n) ⊩ φ or
1st(n) ̸= 0 and 2nd(n) ⊩ ψ,

n ⊩ φ → ψ iff for every m ∈ N, if m ⊩ φ then
{n}(m) ↓ and {n}(m) ⊩ ψ,

n ⊩ ∃xφ iff 2nd(n) ⊩ φ(1st(n)),
n ⊩ ∀xφ(x) iff for all m ∈ N, {n}(m) ↓

and {n}(m) ⊩ φ(m).

Note
Realizers provide evidence for the “truth” of an assertion.
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Realizability Models (McCarty)

Start with a model of ZFC, work with the realizability
structure ω.
Define a hierarchy V(Kl)α by recursion on the ordinals as

V(Kl)α :=
⋃

β∈α

P(ω × V(Kl)β)

and set V(Kl) :=
⋃

α∈Ord V(Kl)α.
Each element, a, of the universe is a collection of pairs ⟨n, b⟩
where n ∈ ω witnesses that b is in a.
Define n ⊩ φ using (slight modification of) Kleene’s
realizability. Say that V(Kl) ⊩ φ iff ∃n(n ⊩ φ).

Theorem (McCarty)
If IZF ⊢ φ then V(Kl) ⊩ φ.
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Double Negation Translations

Developed by Kleene in 1952 and extended to set theory by
Friedman in 1973.
Method to interpret classical mathematics in intuitionistic
mathematics.
Idea: Given φ and ψ produce two translations φ⋆ and ψ−

such that
If IZF ⊢ φ (respectively ZF ⊢ φ) then IZF \ Ext. ⊢ φ⋆

(respectively ZF \ Ext. ⊢ φ⋆),
If ZF \ Ext. ⊢ ψ then IZF \ Ext. ⊢ ψ−.

Conclusion: All four of the above theories are equiconsistent.
The ⋆ translation works by simulating an extensional relation.
The − translation is a ¬¬-translation.

Remark
For the translation to work, ZF \ Ext. should be stated with
Collection (not Replacement), ∈-Induction (not Foundation) and
Weak Power Set (not Power Set).
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The Theory ZFε

Aim: Extract a useful theory from the ⋆ translation.
Work in first order predicate logic without equality and only 3
binary relation symbols;

ε (“strong membership”),
∈ (“extensional membership”),
⊆ (“extensional subset”).

Define a ≃ b by (a ⊆ b) ∧ (b ⊆ a).

Definition (Extensionality Axioms)

∀x∀y
(
x ∈ y ↔ ∃z ε y(x ≃ z)

)
∀x∀y

(
x ⊆ y ↔ ∀z ε x(z ∈ y)

)
.

Idea: The ∈ relation is obtained by “collapsing” the ε
operation (this is how a ∈⋆ b is defined).
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The Axioms of ZFε

ε-Induction Scheme. ∀v
(
∀x

(
∀y ε xφ(y, v) → φ(x, v)

)
→ ∀zφ(z, v)

)
.

ε-Separation Scheme. ∀v∀a∃b∀x(x ε b ↔ (x ε a ∧ φ(x, v))).
ε-Pairing. ∀a∀b∃c(a ε c ∧ b ε c).
ε-Unions. ∀a∃b∀x ε a∀y ε x(y ε b).
ε-Weak Power Sets. ∀a∃b∀x∃y ε b ∀z(z ε y ↔ (z ε a ∧ z ε x)).
ε-Collection Scheme.
∀w∀a∃b∀x ε a

(
∃yφ(x, y, w) → ∃y ε b φ(x, y, w)

)
.

ε-Infinity Axiom. ∀a∃b
(
a ε b ∧ ∀x(x ε b → ∃y(y ε b ∧ x ε y)

)
.

Theorem (Friedman / Krivine)
Let φ(u) be a formula in the language {∈,≃}. If a ≃ b then
ZFε ⊢ φ(a) → φ(b).
Suppose that N = (N, ε,∈,⊆) is a model of ZFε. Then
(N,∈,≃) |= ZF.
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λ-Calculus

Idea: λx.t ≈ t is a function on x.

Definition (λ-terms)
The class Λ is recursively defined as follows:

(variables) x ∈ Λ for any variable x,
(application) tu ∈ Λ whenever t, u ∈ Λ,
(abstraction) λx.t ∈ Λ whenever x is a variable and t ∈ Λ.

Definition (β-reduction)
(λx.t)u →β t[x := u].

Example: (Identity) (λx.x)t →β t.
Pseudo-example: (λx.x2 + 1)2 →β 22 + 1.
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Realizability Algebras
Let κ, µ be a pair of cardinals.
Terms Λ(κ,µ):

Any variable is a term,
(application) ts where t, u are terms,
(λ-abstraction) λx.t where x is a variable and t a term,
(call-with-current-condition) cc is a term,
(continuation-constant) kπ where π is a stack,
Special instructions tα for α < κ.

Stacks Π(κ,µ):
(push) t · π where t is a term and π a stack,
Stack bottoms ωα for α < µ.

Definition (Process)
A process is a pair t ⋆ π where t ∈ Λ(κ,µ) and π ∈ Π(κ,µ).
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Realizers

Definition (Realizer)
A term t is called a realizer if it contains no occurrence of a
continuation constant.1 We denote by R the collection of all
realizers.

Examples:
Identity: I := λx.x,
0 := λx.λy.y,
1 := λx.λy.xy,
n := λx.λy.x(x . . . (xy)),
(Turing fixed point) λx.λy.

(
y(xx)

)(
xx

)
.

1i.e. a kπ for some π ∈ Π
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Evaluations

Definition (Evaluation)
An evaluation is a relation ≻ which satisfies the four rules

ts ⋆ π ≻ t ⋆ s · π (push),
λf .t ⋆ s · π ≻ t[f := s] ⋆ π (grab),

cc ⋆ t · π ≻ t ⋆ kπ · π (save),
kπ ⋆ t · σ ≻ t ⋆ π (restore).

Definition (Pole)
A pole is a set ⊥⊥ ⊆ Λ ⋆Π such that

((s ⋆ σ ≻ t ⋆ π) ∧ (t ⋆ π ∈ ⊥⊥)) → s ⋆ σ ∈ ⊥⊥.

Definition (Realizability Algebra)
A realizability algebra is a tuple A = (Λ(κ,µ),Π(κ,µ),≺,⊥⊥).



Preliminaries The Model Ordinals Large Cardinals

The Realizability Structures

Recall:
V(Kl)α :=

⋃
β∈α

P(ω × V(Kl)β)

Given A = (Λ,Π,⊥⊥,≺), define N = (N, ε,∈,⊆) by
N0 = ∅,
Nα+1 = P(Nα × Π),
Nλ =

⋃
α∈λ Nα, for λ a limit

N =
⋃

α∈Ord Nα.

Idea
(a, π) ∈ b provides evidence that a is not in b.
Elements of Π provide evidence for the “falsity” of a statement.

Define two sets ∥φ∥ ⊆ Π witnessing the “falsity” of φ and |φ| ⊆ Λ
witnessing the “truth” of φ.
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Truth and Falsity

Definition (|φ|)
|φ| := {t ∈ Λ | ∀π ∈ ∥φ∥ (t ⋆ π ∈ ⊥⊥)}.
Say t realizes φ (t ⊩ φ) if t ∈ |φ|.

Definition (∥φ∥)
∥⊤∥ = ∅,
∥⊥∥ = Π,
∥a ε/ b∥ = {π ∈ Π | (a, π) ∈ b},
∥a ̸∈ b∥ =

⋃
c∈dom(b){t · t′ ·π | (c, π) ∈ b, t ⊩ a ⊆ c, t′ ⊩ c ⊆ a},

∥a ⊆ b∥ =
⋃

c∈dom(a){t · π | (c, π) ∈ a, t ⊩ c ̸∈ b},
∥φ → ψ∥ = {t · π | t ⊩ φ, π ∈ ∥ψ∥},
∥∀xφ(x)∥ =

⋃
a∈N∥φ[a \ x]∥.
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The Model

A = (Λ,Π,⊥⊥,≺) and N = (N, ε,∈,⊆).

Definition
N ⊩ φ (φ is true in N ) if there exists a realizer t ∈ R such that
t ⊩ φ.
Given a set of formulas Γ, N ⊩ Γ iff for every φ ∈ Γ, N ⊩ φ.

Theorem (Krivine)
If ZFε ⊢ φ then N = (N, ε,∈,⊆) ⊩ φ.
(N,∈,≃) ⊩ ZF.
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Pierce’s Law |φ| := {t ∈ Λ | ∀π ∈ ∥φ∥ (t ⋆ π ∈ ⊥⊥)}

Proposition
Suppose that π ∈ ∥φ∥. Then for any ψ, kπ ⊩ φ → ψ.

Proof.
Take t · σ ∈ ∥φ → ψ∥.
Then t ⊩ φ and σ ∈ ∥ψ∥.
Then kπ ⋆ t · σ ≻ t ⋆ π.
But t ⋆ π ∈ ⊥⊥.
Thus, kπ ⋆ t · σ ∈ ⊥⊥.

Proposition (Pierce’s Law)
For any φ and ψ, cc ⊩ ((φ → ψ) → φ) → φ.
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Pierce’s Law |φ| := {t ∈ Λ | ∀π ∈ ∥φ∥ (t ⋆ π ∈ ⊥⊥)}

Proposition
Suppose that π ∈ ∥φ∥. Then for any ψ, kπ ⊩ φ → ψ.

Proposition (Pierce’s Law)
For any φ and ψ, cc ⊩ ((φ → ψ) → φ) → φ.

Proof.
Suppose that t ⊩ (φ → ψ) → φ and π ∈ ∥φ∥.
By above, kπ ⊩ φ → ψ.
So cc ⋆ t · π ≻ t ⋆ kπ · π ∈ ⊥⊥. □

Observation
Pierce’s law is equivalent to Excluded Middle, so N will satisfy
classical logic.
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Realizability versus Forcing The “obvious” way

Suppose that B = (B, 1, 0,∧,∨,¬) is a complete Boolean
algebra.
Define a realizability algebra AB = (κ, µ,≺,⊥⊥) as follows:

κ = 0, µ = |B|.
(ωp | p ∈ B) is a set of stack bottoms,
Define a function τ : Λ(0,µ) ∪ Π(0,µ) → B in the “obvious” way,
Say t ⋆ π ≻ s ⋆ σ iff τ(t) ∧ τ(π) ≤ τ(s) ∧ τ(σ),
Set ⊥⊥ = {t ⋆ π | τ(t) ∧ τ(π) = 0}.

Theorem (M. / essentially Krivine)
For any sentence φ,

N ⊩A φ iff λx.x ⊩A φ iff φ is valid in VB.

Conclusion
Every Boolean-valued model can be viewed as a realizability model.
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Daleth names
Aim: Find a way to interpret every ground model set in the
realizability model. In forcing, have ǎ := {(1, b̌) | b ∈ a}.

Definition
Given a ∈ V, ℸ(a) := {(ℸ(x), π) | x ∈ a, π ∈ Π}.

Proposition
If a ⊆ b then N ⊩ ℸ(a) ⊆ ℸ(b),
If a ∈ b then λx.x ⊩ ℸ(a) εℸ(b).

Warning
ℸ(a) can contain lots more elements than just {ℸ(b) | b ∈ a}.

Example
ℸ(2) is a Boolean algebra of subsets of 1 in the ZFε model, which
consistently has size greater than 2!
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Ordinals

Definition (Over ZFε)
A set a is a ε-ordinal if it is a ε-transitive set of ε-transitive sets,
i.e.

∀x ε a∀y ε x (y ε a) ∧ ∀z ε a ∀x ε z ∀y ε x (y ε z).

Proposition
If (N, ε,∈,⊆) |= a is a ε -ordinal, then
(N,∈,≃) |= a is an ordinal.
If δ is an ordinal in V then N ⊩ “ℸ(δ) is a ε -ordinal”.

Theorem (Fontanella, M.)
For every n ∈ ω, N ⊩ ℸ(n) is the nth natural number.
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What about ω?

Definition
For n ∈ ω, let n̂ := {(m̂,m · π) | π ∈ Π,m ∈ n}.2

Theorem (Fontanella, M.)
For every n ∈ ω, N ⊩ ℸ(n) ≃ n̂.

Theorem (Krivine / Fontanella, Geoffroy)
Let ω̂ = {(n̂, n · π) | π ∈ Π, n ∈ ω}. Then
N ⊩ ω̂ is the first infinite ordinal.

Question
We can prove N ⊩ ω̂ ⊆ ℸ(ω). Does N ⊩ ω̂ ≃ ℸ(ω)?

2Where n is some fixed, recursively defined sequence of realizers
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Preserving Cardinals

Proposition (Over ZFε)
If (N, ε,∈,⊆) |= a is a ε -cardinal 3 then
(N,∈,≃) |= a is a cardinal.

Theorem (Fontanella, M.)
Let δ > |Λ| be a regular cardinal. Then

N ⊩ ∀f ∀a εℸ(δ) ∃b εℸ(δ)(Fun(f) → ∀y ε a(⟨y, b⟩ ε f →⊥)).

i.e. for all a εℸ(δ) any f : a → ℸ(δ) is not a ε-surjection.

Corollary
For every δ > |Λ|, ℸ(δ) is a ε-cardinal in N and hence a cardinal
in (N,∈,≃).

3i.e. for every b ε a there is no ε-function which is an ε-surjection
(∀y ε a ∃x ε b ⟨x, y⟩ ε f) of b onto a.
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Chain Conditions

Definition (δ-chain condition)
A realizability algebra satisfies the δ-chain condition if there exists
a realizer p ∈ R such that for every A ⊆ Λ of cardinality at least δ,
for every t ∈ Λ and π ∈ Π:

if for every a ̸= b in A (t ⋆ a · b · π ∈ ⊥⊥), then
there exists an a ∈ A such that p ⋆ t · a · π ∈ ⊥⊥.

Theorem (Fontanella, M.)
Suppose that a realizability algebra satisfies the δ-chain condition
for some regular cardinal δ, as witnessed by the term p. Then
there exists a realizer v such that,

v ⊩ ∀a εℸ(δ)(“there is no surjection of a onto ℸ(δ)”).
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Chain Conditions are Chain Conditions

Definition (δ-chain condition)
A realizability algebra satisfies the δ-chain condition if there exists
a realizer p ∈ R such that for every A ⊆ Λ of cardinality at least δ,
for every t ∈ Λ and π ∈ Π:

if for every a ̸= b in A (t ⋆ a · b · π ∈ ⊥⊥), then
there exists an a ∈ A such that p ⋆ t · a · π ∈ ⊥⊥.

Theorem (Fontanella, M.)
Let B be a complete Boolean algebra and δ a regular cardinal. B
satisfies the δ-cc if and only if AB satisfies the δ-cc.

Proof
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Large Cardinals vs Large Sets

In ZFC, large cardinals are ordinals which satisfy some nice
properties.
But in ZFε (or IZF), ε-ordinals are not well-behaved.4

Instead easier to preserve structural properties derivable from
large cardinals.

Theorem (ZFC)
κ is inaccessible if and only if Vκ is a model of ZF2 (full
second-order ZF).

4e.g. ℸ(2) and 4̂ can be two distinct ordinals of size 4!
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Inaccessibility

Definition (ZFε)
We call a set z inaccessible if it satisfies: ε-Empty Set, ε-Pairing,
ε-Unions, ε-Infinity, ε-Weak Power Set and ε-Second-order
Collection. 5

Theorem (Fontanella, Geoffroy, M.)
Suppose that N = (N, ε,∈,⊆) satisfies ZFε plus z is an
inaccessible set. Then (N,∈,≃) is a model of ZF plus z = Vδ

where δ is an inaccessible cardinal.

Theorem (Fontanella, Geoffroy, M.)
If κ is an inaccessible cardinal in V and A ∈ Vκ, then

N ⊩ Nκ is an inaccessible set
where Nα =

⋃
β∈α P(Nβ × Π).

5∀u ε z∀f(∀x ε u ∃y ε z (⟨x, y⟩ ε f) → ∃v ε z ∀x ε u ∃y ε v (⟨x, y⟩ ε f))
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Measurability

Work over ZFC and suppose κ is measurable and the critical
point of the elementary embedding j : V → M.
Suppose A ∈ Vκ.
Define j⋆ := {(⟨x, j(x)⟩, π) | x ∈ N, π ∈ Π}.

Theorem (Fontanella, Geoffroy, M.)
In N = (N, ε,∈,⊆, j⋆),

j⋆ is a ε-function,
ℸ(κ) ε j⋆(ℸ(κ)) and ∀x εℸ(κ)(j⋆(x) ≃ x),
j⋆ is an elementary embedding (for formulas in the language
{ε,∈,⊆}),
(N,∈,≃) |= ZF + there exists a V-critical cardinal.6

6δ is a V-critical cardinal if it is the critical point of some elementary
embedding j : V → M.
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Reinhardt

Suppose (V, C) is a model of GB and κ is Reinhardt (the
critical point of an elementary embedding j : V → V).
Suppose A ∈ Vκ.
Then we can define a second-order version of the realizability
structure N = (N,D, ε,∈,⊆).

Theorem (Fontanella, Geoffroy, M.)
(N,D, ε,∈,⊆) |= GBε,
(N,D, ε,∈,⊆) |= j∗ : N → N is an elementary embedding,
(N,D,∈,≃) |= GB + there exists a Reinhardt cardinal.
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Open Questions

1 Does N ⊩ ω̂ ≃ ℸ(ω)?
2 Does every realizability model satisfy SVC? 7

3 Is there a connection between realizability models and
symmetric submodels? 8

4 Can we generalise other forcing notions to realizability (e.g.
closure)?

5 Is the ground model definable in the realizability model? 9

6 In Krivine’s model for the Axiom of Choice, we know there is
a realizer for Choice but what is it?

7 Can we realize the Axiom of Constructibility?
8 In the realizability model for measurable cardinals, is j⋆

definable in N ?

7i.e. we can force Choice over the model. This would mean it is equivalent
to a symmetric submodel of some model of ZFC.

8Conjectured to be yes by Asaf Karagila
9Partial positive answers by Krivine
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τ Interpretation Back

Define τ : Λ(0,µ) ∪ Π(0,µ) → B by:

for every stack bottom ωp, we let τ(ωp) := p;
for every variable x, τ(x) := τ(cc) := 1;
for every term t and stack π, we let τ(t · π) = τ(t) ∧ τ(π);
for all λc-terms t, u, we let τ(tu) := τ(t) ∧ τ(u);
for every variable x and every term t, we let τ(λx · t) := τ(t);
for every stack π, we let τ(kπ) := τ(π).

Observations
If t is a realizer then τ(t) = 1
If τ(t) = τ(s) then t ⊩A φ ⇔ s ⊩A φ.
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B satisfies δ-cc implies AB satisfies δ-cc Back

Proof.
Fix A ⊆ Λ, |A| ≥ δ, t ∈ Λ, π ∈ Π. Suppose for a ̸= b,
t ⋆ a · b · π ∈ ⊥⊥.
Then 0 = τ(t) ∧ τ(a) ∧ τ(b) ∧ τ(π).
If τ(t) ∧ τ(π) = 0 then λf .f ⋆ t · a · π ∈ ⊥⊥ for all a ∈ A.
Suppose τ(t) ∧ τ(π) > 0. If ∃a ∈ A, τ(a) ∧ τ(t) ∧ τ(π) = 0
then λf .f ⋆ t · a · π ∈ ⊥⊥.
Otherwise, must have τ(a) ∧ τ(b) = 0 for all a ̸= b.
So {τ(a) | a ∈ A} is an antichain of size ≥ δ.
Contradicting δ-cc in B.
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AB satisfies δ-cc implies B satisfies δ-cc Back

Proof.
Fix A ⊆ B to be an antichain of cardinality ≥ δ.
For p ∈ B, let ωp be the stack bottom corresponding to p.
WLOG, assume 0 ̸∈ A.
For a ̸= b, 1 ∧ a ∧ b = 0
So, for a ̸= b, τ(λf .f) ∧ τ(ωa) ∧ τ(ωb) ∧ τ(ω1) = 0.
Thus λf .f ⋆ ωa · ωb · ω1 ∈ ⊥⊥.
So, since |A| ≥ δ, fix a ∈ A such that p ⋆ λf .f · ωa · ω1 ∈ ⊥⊥.
Then 0 = τ(p) ∧ τ(λf .f) ∧ τ(ωa) ∧ τ(ω1) = a, contradiction.
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