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Uses of Algorithmic Randomness in Mathematics

I Quite aside from its intrinsic interest, there have recently been a
number uses of algorithmic randomness in mathematics.

I After all, giving meaning to randomness for an individual string or
sequence (real) is surely a useful tool.

I Lutz, Stull and Lutz have had great success using this tool and their
“point to set” principle to prove theorems in geometric measure
theory.

I New simpler proofs of old results: Lutz and Lutz gave a new proof of
of the two-dimensional case of the well-known Kakeya conjecture.

I In work on subshifts of finite type, Hochman and Meyerovitch,
showed that values of entropies of subshifts of finite type over Zd for
d ≥ 2 are exactly the complements of halting probabilities.

I Often algorithms result from using probability to show that something
exists and then observing that the condition is a closed one. E.g.
Bosserhof’s construction in Banach Spaces.

I In this paper we will show that understanding how much randomness
is needed for classical theorems can yield algorithms.



Motivating Questions

I Bollobás in the introduction to his book, originally in 1985. In this
introduction, Bollobás motivates the use of probabilistic ideas in
graph theory. He mentioned that earlier probabilistic application had
been found in analysis via three famous papers of Paley and Zygmund
(1932-33)

“Paley and Zygmund (1930a,b,1932) had investigated
random series of functions. One of their results was that if
the real numbers cn satisfy

∑∞
n=0 c

2
n =∞ then∑∞

n=0±cn cos nx fails to be a Fourier-Lebesgue series for
almost all choices of the signs. To exhibit a sequence of
signs with this property is surprisingly difficult: indeed there
is no algorithm known which constructs an appropriate
sequence of signs from any sequence cn with

∑∞
n=0 c

2
n =∞.

”



I An almost identical question can be found even earlier in the 1968
version of Kahane’s book (most recently, (2003 version) page 47),

“If
∑

c2n =∞, there exists a choice of signs ± such that∑
±cn cos(nt + ϕn) is not a Fourier-Stieltjes series. A

surprising fact is that nobody knows how to construct these
signs explicitly, but a random choice works.”

I Thus, this natural question is now at least 50 years old.



Formulating this mathematically

I As logicians we know how to formulate questions like this.

I We wish to say that given the data specifying the input we have an
algorithm to specify the signs.

I We can use the umbrella of computable analysis to work within.

I A positive solution to Bollobás’s problem would consist of an
algorithm which runs on Turing’s idealised machine.

I On an “input tape” of the machine is written the sequence of reals
〈cn〉. The machine runs indefinitely, and on an “output tape” is
gradually written a solution: a sequence 〈xn〉 ∈ {−1, 1}∞ such that∑

xncn cos nt is not a Fourier-Lebesgue series.

I The main point is that there is a single algorithm which given the
input 〈cn〉 produces a desired output 〈xn〉. We say that the outputs
are uniformly computable from the inputs.



Strategy

I Identify the amount of randomness needed for the proof of the
classical theorem, and use that to understand the existence or
nonexistence of an operator.

I We use the theory of algorithmic randomness.
I This theory abandons the idea of absolute randomness and thinks of a

real as being random at a certain level of sensitivity if it passes all
tests for that level.

Definition

(i) A name of an open set U is a list 〈V0,V1,V2, . . .〉 of basic open sets such
that U =

⋃
n Vn.a

(ii) A name of a sequence of open sets U0,U1, . . . is a sequence consisting of a
name of U0, a name of U1, . . . .

(iii) A name of a Gδ set G is a name of a nested sequence of open sets
U0,U1,U2, . . . such that G =

⋂
n Un.

(iv) A name of an Fσ set is a name of its complement.

aFor a closed interval, we can take the basis consisting of rational open
intervals; in Cantor space, the basis of clopen sets, each determined by finitely
many values.



I We analysed a theorem of Potgeiter

Theorem

Given 〈cn〉 and 〈ϕn〉 with
∑

c2n =∞, we can compute a name of a null Fσ
set containing all x ∈ {−1, 1}∞ for which

∑
xncn cos(nt + ϕn) is a

Fourier-Stieltjes series.

I We can then quote a standard result from computability theory:

Theorem

Given a (computable) name of a null Fσ set H, we can compute a
(computable) point x /∈ H.

I That’s because they are Kurtz Tests. Recall a Kurtz null test (e.g. in
2ω is a computable collection of clopen sets V = {Ve | e ∈ N} with
Ve = {[σ] : σ ∈ Df (e)}, with f computable and λ(Ve) ≤ 2−e .

I Running the enumeration of ∩V till the measure is below 2−(e+1)

allows us to compute a Cauchy sequence converging to a computable
real, outside of ∩V to within 2−e .

I The same proof works for Schnorr Tests which are ML-tests, but with
λ(Ve) = 2−e .



Rademacher Series

I The Paley-Zygmund theorems were motivated by questions of
Rademacher, who, along with Steinhausseem to be the original people
to study random series.

I Random trigonometric series arise quite naturally in, for example,
Brownian motion, and random noise in image processing

I Major area of analysis.

Theorem (Rademacher 1922)

Let 〈cn〉 be a sequence of real numbers.

(i) If
∑

c2n =∞ then
∑

xncn diverges for almost all x ∈ {−1, 1}∞.

(ii) If
∑

c2n <∞ then
∑

xncn converges for almost all x ∈ {−1, 1}∞.

I The canonical nontrivial example for (ii) is the Harmonic series
∑

n
1
n .

I If
∑

c2n =∞, then choosing xn so as to make xncn > 0 will cause
divergence of the Rademacher series.

I But what level of randomness is needed?



Rademacher Serier II

Theorem

Let 〈cn〉 be a sequence of real numbers and let x = 〈xn〉 ∈ {−1, 1}∞.

(i) If
∑

c2n =∞ and x is Kurtz random relative to 〈cn〉 then
∑

xncn
diverges.

(ii) If
∑

c2n <∞ and x is Schnorr random relative to (〈cn〉,
∑

c2n) then∑
xncn converges.

I Part (ii) was first shown by Ongay-Valverde and Tveite (2021).
Potgieter (2018) showed that ML-randomness suffices for both cases.
We will give simple proofs of both.

I We also consider what happens if we don’t know the value of
∑

c2n .



Divergence of Rademacher Series

I Given 〈cn〉 for which
∑

c2n =∞ we can (uniformly) compute a name
of a null Fσ set containing all x ∈ {−1, 1}∞ for which

∑
xncn

converges.

I Paley-Zigmund Inequality For any natural N and sequence of reals
a0, a1, . . . , aN−1, if

∑
n<N a2n > 1/4 then

P
{
τ ∈ {−1, 1}N :

∣∣∣∣∑
n<N

τnan

∣∣∣∣ > 1

2

}
>

1

6
, (1)

where P denotes the fair-coin probability measure on {−1, 1}N .

I Given 〈cn〉 with
∑

c2n =∞ we can compute a partition of N into
intervals I0 < I1 < · · · (so min Ik+1 = max Ik + 1), with each
interval Ii sufficiently long so that∑

n∈Ii

c2n >
1

4
.



I For each i let

Ci =

{
x ∈ {−1, 1}∞ : (∀j ≥ i)

∣∣∣∣∑
n∈Ij

xncn

∣∣∣∣ ≤ 1

2

}
.

I Then each Ci is closed and null (it is the product of infinitely many
independent clopen sets, each with measure at most 1/6). Hence,
H =

⋃
i Ci is a null Fσ set with 〈cn〉-computable name, that contains

every x for which
∑

xncn converges.



Convergence of Rademacher Series

I Paley-Zigmund For any N, sequence of real numbers 〈an〉n<N and any
ε > 0,

P
{
τ ∈ {−1, 1}N : max

m<N

∣∣∣∣ ∑
n≤m

τnan

∣∣∣∣ > ε

}
≤ 1

ε2

∑
n<N

a2n. (2)

I The inequality holds for N =∞ as well, in which case we need of
course to replace max with sup. With the triangle inequality, we can
deduce the following:

P
{
τ ∈ {−1, 1}N : max

k≤m<N

∣∣∣∣ m∑
n=k

τnan

∣∣∣∣ > ε

}
≤ 4

ε2

∑
n<N

a2n. (3)

(In fact, the proof of Kolmogorov’s inequality gives the bound∑
a2n/ε

2.)



I Given both a name of a nested sequence 〈Un〉 of open sets such that
λ(Un)→ 0, and the sequence 〈λ(Un)〉, we can compute a Schnorr
name of

⋂
n Un.

I The proof is an easy induction.
I Given 〈cn〉 for which

∑
c2n <∞, and the value of that sum, we can

(uniformly) compute a Schnorr name of a null set containing all
x ∈ {−1, 1}∞ for which

∑
xncn diverges.

I Given 〈cn〉 and
∑

c2n , we can compute a partition of N into intervals
I0 < I1 < · · · such that for all k ≥ 1,

∑
n∈Ik c

2
n < 2−3k−2,

I y (3), λ(Ak) ≤ 2−k , where

Ak =

{
x ∈ {−1, 1}∞ : max

J⊆Ik

∣∣∣∣∑
n∈J

xncn

∣∣∣∣ > 2−k
}
,

I Let Um =
⋃

k>m Ak . A name of 〈Um〉 can be obtained computably
given the data, and λ(Um) is computable as well given the data
(Um,s =

⋃s
k=m+1 Ak is a clopen set approximating Um to within 2−s).

If x ∈ {−1, 1}∞ and
∑

xncn diverges then x ∈ Ak for infinitely
many k, so x ∈

⋂
m Um.



Comments

I The method of Potgieter only gives ML tests and it is not clear if his
proof can be adapted to give Schnorr tests. (Detailed analysis in our
full paper.)

I Ongay-Valverde and Tveite (2021), Lemma 6.7 claim to prove (ii).
They use sophisticated machinery developped by Rute in an
unpublished manuscript, rather than directly producing Schnorr null
sets. However, it appears that they only prove convegrence of a
subsequence of the partial sums

∑
n≤k xncn.

I Question: What if we are given a sequence 〈cn〉 with
∑

c2n <∞, but
we are not told what the sum is?

I It appears that Schnorr randomness will not suffices in this case.



Oberwolfach Randomness

Definition

An OW-null set is a set contained in an intersection
⋂

n Un, where 〈Un〉 is
a nested sequence of uniformly enumerable open sets such that for some
left-c.e. real α and some increasing computable rational
approximation 〈αn〉 of α, we have λ(Un) ≤ α− αn for all n.

I λ(Un)→ 0 is witnessed by the fact that the approximation αn → α
converges. Computably, at very late stages s, we discover that the
sets Un for n < s are “allowed to grow” by a large amount (much
larger than 2−s).

I This “amount of growing” eventually goes to 0, but we cannot tell
computably how quickly.



I We could prove the following

Theorem

Let 〈cn〉 be such that
∑

c2n <∞. If x ∈ {−1, 1}∞ is OW-random relative
to 〈cn〉, then

∑
xncn converges.

I The proof is to observe

Uε
m =

{
x ∈ {−1, 1}∞ : sup

k≥m

∣∣∣∣ k∑
n=m

xncn

∣∣∣∣ > ε

}
.

is an OW-test.



Fourier-Stieltjes Series

I We are given 〈cn〉 and 〈ϕn〉. For each finite binary string
τ = (τ0, τ1, . . . , τm) ∈ {−1, 1}m+1, let the corresponding Fejér sum be

στ (t) =
∑
n≤m

(
1− n

m

)
τncn cos (nt + ϕn) .

I This is a continuous function on [0, 2π] and the functions στ for
τ ∈ {−1, 1}<∞ are uniformly computable relative to (〈cn〉, 〈ϕn〉).

I By Zygmund 1959, for all x ∈ {−1, 1}∞,
∑

xncn cos(nt + ϕn) is
Fourier-Stieltjes if and only if

sup
m
‖σx�m‖1 <∞,

where recall that ‖f ‖1 =
∫ 2π
0 |f (t)| dt.



I By Pour-El and Richards, Ch 0, Thm 5, the values ‖στ‖1 are
uniformly computable relative to the data. For each K , let

CK =
{
x ∈ {−1, 1}∞ : (∀m) ‖σx�m‖1 ≤ K

}
.

Then each CK is closed, effectively so given the data. The required
Fσ set is thus

⋃
K CK ; this set is null by the classical result that under

the assumption,
∑

xncn cos(nt + ϕn) is not Fourier-Stieltjes for
almost all x .

I We remark that Potgeiter (2018) follows similar path, but the proof
has a gap in concerning Reimann sums and we rerpaied this with the
Pour-El Richards material.

I Question: What about pointwise convergence/divergence?



Pointwise results

Theorem (Paley and Zygmund 1932)

Let 〈cn〉 and 〈ϕn〉 be a sequences of real numbers.

(i) If
∑

c2n <∞, then for almost all x ∈ {−1, 1}∞,
∑

xncn cos(nt + ϕn)
converges for almost all t ∈ [0, 2π].

(ii) If
∑

c2n =∞, then for almost all x ∈ {−1, 1}∞,
∑

xncn cos(nt + ϕn)
diverges for almost all t ∈ [0, 2π].

I We study effectiveness, asking not only for almost everywhere
divergence, but also, what level of randomness of t ensures this
divergence. This leads us to consider randomness in the product
space {−1, 1}∞ × [0, 2π], which is defined as expected, using the
product measure λ× µ.



Theorem

Let 〈cn〉 and 〈ϕn〉 be sequences of real numbers, and suppose that∑
c2n =∞. If (x , t) ∈ {−1, 1}∞ × [0, 2π] is Schnorr random relative to

(〈cn〉, 〈ϕn〉) then
∑

xncn cos(nt + ϕn) diverges.

We note that this theorem implies that if x is Schnorr random then∑
xncn cos(nt + ϕn) diverges almost everywhere.

Theorem

Let 〈cn〉 and 〈ϕn〉 be sequences of real numbers, and suppose that∑
c2n <∞. If (x , t) ∈ {−1, 1}∞ × [0, 2π] is Schnorr random relative to

(〈cn〉, 〈ϕn〉,
∑

c2n) then
∑

xncn cos(nt + ϕn) converges.



I The proofs are along similar lines of analysing the random sets
aobtained in variations of the classical proofs.

I We don’t know whether Kurtz randomness suffices for divergence.

I There are many open lower bound questions:



Lower Bounds

I We’d like to have classifications like:

Theorem (Bratkka, Miller, Nies (2016))

A point x ∈ [0, 1] is ML-random if and only if every computable function
f : [0, 1]→ R of bounded variation is differentiable at x.

Theorem (Gács, Hoyrup, Rojas (2011))

Let (X , µ) be a computable measure space, and let T : X → X be
computable and ergodic. A point x ∈ X is Schnorr random if and only if
for every computable function f : X → R,

lim
n→∞

1

n

∑
i<n

f (T ix) =

∫
f dµ.

I For instance, does Kurtz randomness chacarterize divergence of
Rademacher series?



I NO

I This is a new (and natural) phenomenon in randomness:

Theorem

Suppose that P ⊂ {−1, 1}∞ is effectively closed, and that ther e is a
computable tree T ⊂ {−1, 1}<∞ such that P = [T ] and for a ll n, T
contains fewer than log2 n many strings of length n. Then ther e is a
computable sequence 〈cn〉 such that

∑
c2n =∞, but

∑
xncn converges for

all x ∈ P.

I Such an effectively closed set must be null, as log2 n/2n → 0, and so
(as is necessary) no x ∈ P is Kurtz random. We note that very small
effectively closed sets of Binns (2005) have this property.

I The proof: Let Ik = [2k , 2k+1). For each k , since there are at most k
strings of length 2k+1 in T , there is some nk ∈ Ik such that τnk is a
constant value ik for all τ ∈ T of length 2k+1. We let
cnk = (−1)k ik/

√
k and cn = 0 if n 6= nk for all k .



I The following lower bound is also weaker than randomness. A
sequence x ∈ {−1, 1}∞ is bi-immune if neither {n : xn = 1} nor its
complement {n : xn = −1} contain an infinite computable set
(equivalently, an infinite computably enumerable set). All Kurtz
random sequences are bi-immune.

Theorem

If x is not bi-immune then there is a computable sequence 〈cn〉 with∑
c2n =∞ but

∑
xncn converges.

I The proof: Let A be an infinite computable set such that either
xn = 1 for all n ∈ A, or xn = −1 for all n ∈ A. Let n1, n2, . . . be the
increasing enumeration of the elements of A. Let cnk = (−1)k/

√
k ; if

n 6= nk for any k let cn = 0.



Some Recent Results

I Define SCP strong convergence property:
∑

xiai converge whenever
〈ai 〉 computable and square-summable, even if the sum of squares is
not computable.

I (Downey, Greenberg, Tanggarra) Schnorr Random implies CP (where
the sum is known)

I (Bienvenu and Greenberg) Computably Random implies SCP

I Motivated by several counterexamples, Ruofei Xie looked at strong
extensions: expanding the area for selecting the sequence of reals
from the computable ones to the partial computable ones. The formal
definition is as follows. Definition 5.1. Given a partial computable
function f , let f be the extension which converges and gives 0 of
f (x) ↑. Now we seek convergence if

∑
xnf (n) converges for all partial

f with
∑

n f (n)2 <∞. Call this VSCP.

I (Ruofei Xi) MLR implies VSCP

I All notions distinct.
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