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Conjugacy and Borel complexity theory Essentially countable complexities

Structures and automorphism groups

Notation
For this talk we let:

• M denote a countable relational structure with at most
countably many relations

• Aut(M) denote the group of automorphisms of M.

Question
For a given structure M, how many different kinds of
automorphism does M possess? How hard is it to classify them all?

Definition
We will say two automorphisms ϕ, ψ ∈ Aut(M) are the same kind
if they are conjugate: there exists α ∈ Aut(M) such that
ψ = αϕα−1.

Conjugacy, classification, and complexity Samuel Coskey (Boise State University)



Conjugacy and Borel complexity theory Essentially countable complexities

Structures and automorphism groups

Notation
For this talk we let:

• M denote a countable relational structure with at most
countably many relations

• Aut(M) denote the group of automorphisms of M.

Question
For a given structure M, how many different kinds of
automorphism does M possess? How hard is it to classify them all?

Definition
We will say two automorphisms ϕ, ψ ∈ Aut(M) are the same kind
if they are conjugate: there exists α ∈ Aut(M) such that
ψ = αϕα−1.

Conjugacy, classification, and complexity Samuel Coskey (Boise State University)



Conjugacy and Borel complexity theory Essentially countable complexities

Structures and automorphism groups

Notation
For this talk we let:

• M denote a countable relational structure with at most
countably many relations

• Aut(M) denote the group of automorphisms of M.

Question
For a given structure M, how many different kinds of
automorphism does M possess? How hard is it to classify them all?

Definition
We will say two automorphisms ϕ, ψ ∈ Aut(M) are the same kind
if they are conjugate: there exists α ∈ Aut(M) such that
ψ = αϕα−1.

Conjugacy, classification, and complexity Samuel Coskey (Boise State University)



Conjugacy and Borel complexity theory Essentially countable complexities

Structures and automorphism groups

Notation
For this talk we let:

• M denote a countable relational structure with at most
countably many relations

• Aut(M) denote the group of automorphisms of M.

Question
For a given structure M, how many different kinds of
automorphism does M possess? How hard is it to classify them all?

Definition
We will say two automorphisms ϕ, ψ ∈ Aut(M) are the same kind
if they are conjugate: there exists α ∈ Aut(M) such that
ψ = αϕα−1.

Conjugacy, classification, and complexity Samuel Coskey (Boise State University)



Conjugacy and Borel complexity theory Essentially countable complexities

A finite example

Example

Let M = the cube graph. Any two quarter turns are conjugate:

There are ten conjugacy classes: identity (1x), quarter turns about
a face (6x), half turns about a face (3x), one-third turns about a
vertex (8x), half turns about an edge (6x), and. . . each of these
composed with inversion x 7→ −x .

Group theorists write the class equation:
|Aut(M)| = 1 + 6 + 3 + 8 + 6 + 1 + 6 + 3 + 8 + 6.
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An infinite example

Example

Let M = K∞ be the complete graph on N. Then Aut(K∞) is
simply the group of all permutations of N.

Permutations are conjugate if and only if they have the same cycle
type, that is, the number of cycles of each length. For instance the
following are conjugate:

(01)(234)(5678) · · · (02)(135)(2468) · · ·

We can therefore classify automorphisms ϕ of K∞ by the
complete, concrete, and explicitly calculated invariants tϕ = the
sequence of numbers recording the cycle type of ϕ.
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Borel complexity theory

Question
Is the complete classification from the last example typical, or are
other outcomes possible?

To answer this, we examine several examples using the lens of
Borel complexity theory of equivalence relations.

Given an equivalence relation like conjugacy, we can measure its
complexity by locating it in the Borel reducibility hierarchy:

Definition
An equivalence relation E on X is Borel reducible to F on Y ,
written E ≤B F , if there is a Borel function f : X → Y such that

x E x ′ ⇐⇒ f (x) F f (x ′)
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The Borel reducibility order

Remarks
• Borel reduciblity induces a quasiorder on equivalence relations.

• We usually limit ourselves to consider equivalence relations
which are Σ1

1 in descriptive complexity, on a domain with the
standard Borel structure (that of R, NN, etc).

• The full quasiorder is wild, but there is plenty of structure too.
some key complexity classes arise frequently:

Id E0 E∞ Id+ Ecomplete

• Here, Id is the equality relation on NN and corresponds to the
case of concrete invariants.
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An example above Id

Example

Let M = K+
∞ = ∞ · K∞ be the disjoint union of countably many

copies of the complete graph.

Theorem
The conjugacy relation on Aut(K+

∞) is Borel bireducible with Id+,
the set equality equivalence relation on sequences of elements of
NN.

Remark
Hence, we cannot classify automorphisms of K+

∞ by complete,
concrete, explicitly calculated invariants.
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A complete example

Example

Let M = G∞ be the random graph, that is, the countable graph
which is universal (contains every countable graph) and
homogeneous (finite partial automorphisms extend to
automorphisms).

Theorem
The conjugacy relation on Aut(G∞) is Borel bireducible with
Ecomplete, the maximum conceivable complexity in this context.

Remark
We have shown many random structures have an automorphism
classification which is complete. The first example was Aut(Q, <),
due to Foreman.
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Countable Borel equivalence relations

We now examine the lower end of the complexity spectrum:

Definition
Let E be an equivalence relation on X . Then E is a countable
Borel equivalence relation if E ⊂ X × X is Borel, and every
equivalence class [x ]E is countable.

Remark
The structure of the countable Borel equivalence relations is simple
at the bottom and top, and wild in the middle:

Id E0 E∞
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Bernoulli equivalence relations

Question
Does there exist M such that conjugacy on Aut(M) is Borel
bireducible with E0? E∞? Intermediate?

To help answer this, we first explore a well-studied family of
countable Borel equivalence relations.

Definition
Let Γ be a countable group. Then EΓ denotes the Bernoulli
equivalence relation on 2Γ defined by x ∼ y if there exists γ ∈ Γ
such that:

(∀α ∈ Γ) x(γα) = y(α)
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Complexity of Bernoulli relations

Remarks
• The Bernoulli relation EZ is bireducible with E0

• The Bernoulli relation EF2 is bireducible with E∞

• There exist groups Γ such that EΓ is intermediate, but it
appears to require a lot of machinery. In fact:

Theorem (Thomas)

There exists a family F continuum many groups such that EΓ for
Γ ∈ F are pairwise Borel incomparable, and hence intermediate
between E0 and E∞.
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Intermediate Bernoulli relations

Theorem (Thomas)

There exists a family F continuum many groups such that EΓ for
Γ ∈ F are pairwise Borel incomparable, and hence intermediate
between E0 and E∞.

Here we list two of the biggest ingredients in the proof.

• By a construction of Olshanskii (plus. . . ), there exists a family
F of continuum many pairwise nonisomorphic countable,
simple, quasifinite, property (T) groups.

• By a result of Popa, there is “superrigidity” for Bernoulli
actions of property (T) groups. This means that a Borel
homomorphism from EΓ to EΓ′ (really, its free part) gives rise
to a group homomorphism Γ → Γ′.

Conjugacy, classification, and complexity Samuel Coskey (Boise State University)
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Bernoulli actions and conjugacy: Construction

We now aim to show that for any countable group Γ, there exists a
conjugacy relation bireducible with EΓ.

Definition
Given a countable group Γ we construct a graph GΓ as follows.

• Begin with a graph coding the directed, labeled Cayley graph
of Γ (with respect to some generating set).

• Attach a ‘Y ’ structure Yγ to each vertex that represents an
element γ ∈ Γ.

Example (The graph GZ)

-2 -1 0 1 2

· · · · · ·
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Bernoulli actions and conjugacy: Statement

Theorem
Let Γ be a countable group.

1. EΓ is Borel reducible to conjugacy on Aut(GΓ).

2. Conjugacy on Aut(GΓ) is Borel reducible to ∆(N)× EΓ.

By carefully re-running the proof of Thomas’s theorem, and
inserting a line or two about ergodicity at the appropriate
moments, we can obtain:

Theorem
There exists a family F of continuum many pairwise Borel
incomparable conjugacy relations intermediate between E0 and E∞.
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Thank you!
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