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o N ~ 10'2-10™ to simulate a small molecule like Fe>S..

@ Each gate is error-corrected to accuracy ¢, so errors build up to
e N/ if they add coherently (worst case, systematic bias).
o /Ny if they add stochastically.

@ § needs to be ~ 1/+/Nto 1/N to prevent harmful error build up.
e 107%to 10~ ° for quantum chemistry (pretty vague).

@ If the physical noise rate ¢ is sub threshold, then fault-tolerant
error correction can produce logical gates of accuracy ¢ with
overhead polylog( ;).

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67
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QEC simulation methods for general noise
Pauli noise

@ Noise modeled by some (perhaps correlated) probability
distribution P(E), over E € PN,
@ To numerically simulate:
Sample E ~ P(E) (only randomness).
Compute associated syndrome s(E).
Decode: guess E from s.
Check if E ~ E (up to stabilizer).
e Repeat to estimate logical error probability.
@ For generalized noise models (think of systematic error U®N):

e Errors are not element of the Pauli group: CPTP map.
e Syndrome is not determined by error: Born’s rule.
e Correction is not right or wrong: some fidelity.
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Quantum many-body methods

@ Realistic noise models cannot be efficiently simulated.
e Interacting quantum many-body problem.

Our contribution

Study fault-tolerance with realistic noise models using numerical
many-body techniques

@ Tensor network methods

e Density matrix renormalization group (DMRG).

e Projected entangled pairs state (PEPS).

e Multi-scale entanglement renormalization ansatz (MERA).
e efc.
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QEC simulation methods for general noise

What goes into a simulation?

@ Prepare some known code state |¢).
@ Applying some noise &£ to p = |1 )1)].
e When £ is some stochastic noise, we can sample the noise instead
of applying £.

@ Sample the syndrome bits pr;(£) = 3(1 & Tr[€(p)S]]).

@ Decode, i.e., find a correction operation C based on the observed
syndrome.

@ Apply the correction to the post-measurement state p'.

@ Evaluate the logical transformation that has been applied to the
logical state.

@ Repeat for different input states ¢ to perform logical process
tomography.
e We actually use Jamilkowski isomorphism instead.

Stuff in red is numerically hard.
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QEC simulation methods for general noise

What goes into a simulation?

If we can do all of this...

INPUT
@ Noise €£.
OUTPUT
@ A syndrome s.
@ The probability of that syndrome pr(s).
@ The logical channel conditioned on that syndrome &£.

Given this we can estimate...
@ Average channel £, = > pr(s)&-
@ Average logical error Y pr(s)||EX — id|]
@ Error of logical average ||€; — id||
@ etc.
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Problem with metrics

Does this question even make sense?

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ How do | quantify the physical noise rate?
o Infidelity e =1 — [ dyF[y, E(¥)] has a nice statistical interpretation,
measured by randomized benchmarking.
e Diamond norm e = ||€ — Z||, composes well, used in analytical FT
studies.
e Hilbert-Schmidt norm € = ||€ — Z||» is easy to manipulate.

etc.
e These metrics can differ significantly, e.g., e vs y/e.

A useful norm is one that enables us to predict the logical failure rate
after error correction. J
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Problem with metrics

Predictability illustrated with Steane’s code

An ensemble of 288000 random channels.
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Predictability illustrated with Steane’s code

An ensemble of 288000 random channels.
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Problem with metrics

Predictability of noise metrics

Conclusion

It is not possible to even very crudely predict the logical failure rate of a
FT scheme given only the noise rate of the physical channel, as
measured by any of the standard error metrics (Infidelity, Diamond
norm, Channel entropy, Error probability, Euclidian norm, Trace norm).

y
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Channel approximations

Pauli approximations

MC simulations are numerically very efficient, but limited to unphysical
Pauli noise models. J
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Channel approximations

Pauli approximations

MC simulations are numerically very efficient, but limited to unphysical
Pauli noise models. J

@ Let’s approximate the physical channel £ by a Pauli channel P.
e Ignore the non-Pauli contributions to the channel.

@ E.g. Rotation R,(0) = €94 = cos 6/ + isinfZ error
p — (cos@l+isinfZ)p(cosfl —isinfZ)
IS approximated by a stochastic Z error (dephazing)

p — €0S%0 p + sin°0 ZpZ.
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Channel approximations

Pauli approximations

MC simulations are numerically very efficient, but limited to unphysical
Pauli noise models. J

@ Let’s approximate the physical channel £ by a Pauli channel P.
e Ignore the non-Pauli contributions to the channel.

@ E.g. Rotation R,(0) = €94 = cos 6/ + isinfZ error
p — (cos@l+isinfZ)p(cosfl —isinfZ)
IS approximated by a stochastic Z error (dephazing)

p — €0S%0 p + sin°0 ZpZ.

@ Or we could find the closest Pauli channel which is no better than
E: Honest Pauli Approximation

Magasan, Puzzuoli, Granade, & Cory arXiv:1206.5407
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Channel approximations

Pauli approximations, surface code overhead

a) 100 Amplitude damping v=9% b) 102

1)
g 107 2 10},
=107 .
S 1073 S 1077
= 107 5107
O -5 @)
219 | | 21078
S10°) 9
-7 ‘ | | | | -22 | | | | | | |
1034567891034567891011
Lattice width W Lattice width W

@ Amplitude damping, lattice up to size 9 x 17 = 153 qubits.
@ Depolarizing, lattice up to size 11 x 11 = 121 qubits.
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Channel approximations

Usefulness of Pauli approximations
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Channel approximations

Usefulness of Pauli approximations

Conclusions

@ |t is not possible to even very crudely predict the logical failure rate
of a FT scheme from known Pauli approximations.

@ The twirl approximation gets a good threshold estimate in the
examples we looked at.

@ |t is essential to develop simulation methods adapted to non-Pauli
noise models to get a reliable estimate of the FT overhead.
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Decoding
Decoding non-Pauli noise

There are two levels of difficulty: decoding and simulating.

@ Even for Pauli noise, decoding is in general a hard problem, but
there are efficient algorithms for some classes of codes.
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Decoding
Decoding non-Pauli noise

There are two levels of difficulty: decoding and simulating.

@ Even for Pauli noise, decoding is in general a hard problem, but
there are efficient algorithms for some classes of codes.

@ For non-Pauli noise, the problem becomes even harder.

Our simulations methods, combined to efficient (approximate)
contraction schemes of TN provide efficient decoders for a wide variety
of non-Pauli and/or correlated noise models.

v
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Decoding

Pauli approximations for surface code decoding

Amplitude damping
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Decoding

Correlated erasures on surface code
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The erasure pattern is given by
spin down configuration of a
classical ferromagnetic Ising model
In @ magnetic field favoring spin
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Decoding

Known vs unknown inhomogeneity

@ Different errors affect the performance of a fault tolerance scheme
differently, so additional efforts should be assign to reduce the
critical noise parameters.
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@ Knowing T; and T is not important, but 7, /T, matters.
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Decoding

Known vs unknown inhomogeneity

@ Different errors affect the performance of a fault tolerance scheme
differently, so additional efforts should be assign to reduce the
critical noise parameters.

@ But for a given device, do | need to know the noise model?

)

©

= —8— TN exact

| - —

c 10 ? —— Assume uniform

O —&— Inhomogeneity known
‘© —— Inhomogeneity incorrect
O
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9

4 6 8
Lattice width

@ Knowing T; and T is not important, but 7, /T, matters.
@ What else?
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Decoding

Channel knowledge
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Decoding
Channel knowledge

@ Incorporating knowledge of the noise model in the decoding
process can be very beneficial.
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Decoding
Channel knowledge

@ Incorporating knowledge of the noise model in the decoding
process can be very beneficial.

@ But an accurate channel description is an overkill: only a subset of
the noise parameters matter.

y
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Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23




Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23



Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

@ Reporting the quality of a qubit with a single number is not useful
to predict how it will respond in a fault-tolerant scheme.

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23




Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

@ Reporting the quality of a qubit with a single number is not useful
to predict how it will respond in a fault-tolerant scheme.

Fault-tolerance critical parameters

In a given experiment, what is the leading noise source which limits the
logical accuracy?

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23




Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

@ Reporting the quality of a qubit with a single number is not useful
to predict how it will respond in a fault-tolerant scheme.

Fault-tolerance critical parameters

In a given experiment, what is the leading noise source which limits the
logical accuracy?

@ Developed machine learning methods to identify such critical
parameters.

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23




Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

@ Reporting the quality of a qubit with a single number is not useful
to predict how it will respond in a fault-tolerant scheme.

Fault-tolerance critical parameters

In a given experiment, what is the leading noise source which limits the
logical accuracy?

@ Developed machine learning methods to identify such critical
parameters.
@ Decoding non-Pauli noise with tensor networks.

D. Poulin (1Q Sherbrooke) QEC Simulations Bristol 2019 22 /23




Conclusion

Given a physical noise rate ¢, how much error correction do | need to
achieve a logical noise rate 67

@ We use methods from quantum many-body physics to address
this question.

@ Reporting the quality of a qubit with a single number is not useful
to predict how it will respond in a fault-tolerant scheme.

Fault-tolerance critical parameters

In a given experiment, what is the leading noise source which limits the
logical accuracy?

@ Developed machine learning methods to identify such critical
parameters.
@ Decoding non-Pauli noise with tensor networks.

Decoding critical parameters
What information must | know about the device to decode it optimally?
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Conclusion

Institue Quantique @ Sherbrooke

We are looking for talented
@ Graduate students
@ Postdocs
@ Visiting faculty/scientists
Talk to me if you have any interest.
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