RH in Characteristic p: the importance of family values

Nicholas M. Katz

Princeton University

Bristol, June 4, 2018

1859: publication of Über die Anzahl der Primzahlen unter einer gegebenen Grösse, 10 pages!

Riemann studies $\zeta(s)$, formulates Riemann Hypothesis on fourth page, saying "es ist sehr wahrscheinlich..." ("it is very likely that...").

German mathematician who made important contributions to analysis and differential geometry

1920-1949 see Roquette's "The Riemann hypothesis in characteristic p, its origin and development"

(function fields of) curves over \mathbb{F}_q as analogues of number fields.

Riemann wanted to count primes ("closed points") of norm up to T;

for curve C/\mathbb{F}_q , this amounts to counting $C(\mathbb{F}_{q^n})$; a closed point \mathcal{P} of norm $\mathbb{N}\mathcal{P}=q^n$ contributes n points to this set.

Notice here that $n = \log_q(\mathbb{NP})$, analogous to counting p with multiplicity $\log(p)$.

1920 thesis (published 1923) Artin; defines Zeta for curves, formulates RH

1931: F.K. Schmidt; correct shape for Zeta of curves

Artin

F.K. Schmidt

counting points

1930; Davenport;
$$y^2 = (x + a_1)...(x + a_k)$$
 over \mathbb{F}_p 1930; Mordell; $y^n = x^m + \text{lower}$, over \mathbb{F}_p

what they wanted: control of the error term as *p* varies

ideally
$$O(p^{1/2})$$
; they got results like $O(p^{3/4})$ or $O(p^{2/3})$

Hasse teased them: "Have you reduced any exponents lately?"

Their response: "So use your fancy 'intrinsic' point of view to do better!"

Davenport

Mordell

a key insight, due to Artin, is that one should **not** vary p, but rather vary the extensions \mathbb{F}_q of a given \mathbb{F}_p , and think of counting \mathbb{F}_q points; then one sees that

RH **is** control of error term as q varies in the fixed characteristic p.

1933,1936; Hasse; proves RH in genus one

Hasse (standing) with Artin

1948; Weil; proves RH for curves of arb. genus. 1949: Weil formulates RH for (projective, smooth) varieties of any dimension ("Weil Conjectures")

1973: Deligne proves Weil Conjectures, makes essential use of families, as incarnated in the "local systems" of Grothendieck and their (compact) cohomology

$$| au(p)| \le 2.p_{11/2}^{11/2}$$

0,60
BELGIQUE BELGIË
2007 Els Vandevyvere

a baby version of Deligne's proof, in the case of curves, using families