Theresa Anderson

Purdue University

Dyadic analysis (virtually) meets number theory

Analysis and Geometry Seminar

4th March 2021, 3:15 pm – 4:15 pm
Online, Zoom

In this talk we discuss two ways in which dyadic analysis and number theory share a rich interaction. The first involves a complete classification of "distinct dyadic systems". These are sets of grids which allow one to compare any Euclidean ball nicely with any dyadic cube, and allow for showing that a large number of continuous objects and operators can be "replaced" with their easier dyadic counterparts. Secondly, we define and make progress on showing the (failure) of a "Hasse principle" in harmonic analysis; specifically, we discuss the interplay between number theory and dyadic analysis that allows us to construct a measure that is "p-adic" doubling for any prime p (in a finite set of primes), yet not doubling overall.

Comments are closed.