### New results for surface growth

Probability Seminar

28th April 2021, 4:00 pm – 5:00 pm

online, online

The growth of random surfaces has attracted a lot of attention in probability theory in the last ten years, especially in the context of the Kardar-Parisi-Zhang (KPZ) equation. Most of the available results are for exactly solvable one-dimensional models. In this talk I will present some recent results for models that are not exactly solvable. In particular, I will talk about the universality of deterministic KPZ growth in arbitrary dimensions, and if time permits, a necessary and sufficient condition for superconcentration in a class of growing random surfaces.

## Comments are closed.