### Polynomial Fourier decay for fractal measures and their pushforwards

Ergodic Theory and Dynamical Systems Seminar

7th March 2024, 2:00 pm – 3:00 pm

Fry Building, Simon Baker

Determining whether a measure is Rajchman, and if it is, a rate at which the Fourier transform converges to zero, is an important problem that connects combinatorics, harmonic analysis, and number theory. In this talk I will discuss this problem in the setting of stationary measures arising from iterated function systems. I will present a recent result which states that if an analytic IFS acting on R does not consist entirely of affine maps, then every self-conformal measure has polynomial Fourier decay. This talk will be based upon joint work with Amlan Banaji and Tuomas Sahlsten.

## Comments are closed.