A counterexample to a conjecture of Steinberg
Algebra and Geometry Seminar
15th May 2019, 2:30 pm – 3:30 pm
Howard House, 4th Floor Seminar Room
Let G be a semisimple algebraic group over an algebraically closed field K. At the 1966 ICM in Moscow, Robert Steinberg conjectured that two elements of G are conjugate if and only if their images are conjugate under every rational irreducible representation of G. The conjecture was proven by Steinberg in the case where K has characteristic zero, and also in the case where the two elements are semisimple. In this talk, I will present a counterexample which was discovered by computational methods.
No items found
No items found
Comments are closed.