Gabriel Goldberg

Harvard University

Even ordinals and the Kunen inconsistency

Logic and Set Theory Seminar

18th November 2020, 4:00 pm – 5:30 pm
Online, Online

Abstract. The Burali-Forti paradox suggests that the transfinite cardinals “go on forever,” surpassing any conceivable bound one might try to place on them. The traditional Zermelo-Frankel axioms for set theory fall into a hierarchy of axiomatic systems formulated by reasserting this intuition in increasingly elaborate ways: the large cardinal hierarchy. Or so the story goes. A serious problem for this already naive account of large cardinal set theory is the Kunen inconsistency theorem, which seems to impose an upper bound on the extent of the large cardinal hierarchy itself. If one drops the Axiom of Choice, Kunen’s proof breaks down and a new hierarchy of choiceless large cardinal axioms emerges. These axioms, if consistent, represent a challenge for those “maximalist” foundational stances that take for granted both large cardinal axioms and the Axiom of Choice. This talk concerns some recent advances in our understanding of the weakest of the choiceless large cardinal axioms and the prospect, as yet unrealized, of establishing their consistency and reconciling them with the Axiom of Choice.

Comments are closed.